List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5179899/publications.pdf Version: 2024-02-01

WELFENC

#	Article	IF	CITATIONS
1	Twoâ€Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. Advanced Science, 2016, 3, 1500413.	5.6	469
2	Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Progress in Materials Science, 2021, 115, 100702.	16.0	402
3	Azobenzene-based solar thermal fuels: design, properties, and applications. Chemical Society Reviews, 2018, 47, 7339-7368.	18.7	306
4	Selfâ€Protective Roomâ€Temperature Phosphorescence of Fluorine and Nitrogen Codoped Carbon Dots. Advanced Functional Materials, 2018, 28, 1800791.	7.8	290
5	Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Materials Science and Engineering Reports, 2020, 142, 100580.	14.8	261
6	Carbon-based functional nanomaterials: Preparation, properties and applications. Composites Science and Technology, 2019, 179, 10-40.	3.8	216
7	Beyond the Visible: Bioinspired Infrared Adaptive Materials. Advanced Materials, 2021, 33, e2004754.	11.1	201
8	Stress Controllability in Thermal and Electrical Conductivity of 3D Elastic Grapheneâ€Crosslinked Carbon Nanotube Sponge/Polyimide Nanocomposite. Advanced Functional Materials, 2019, 29, 1901383.	7.8	187
9	Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale, 2014, 6, 2634-2641.	2.8	177
10	Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 23095-23105.	5.2	167
11	Efficiently Controlling the 3D Thermal Conductivity of a Polymer Nanocomposite via a Hyperelastic Doubleâ€Continuous Network of Graphene and Sponge. Advanced Functional Materials, 2018, 28, 1805053.	7.8	147
12	Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. Journal of Power Sources, 2016, 312, 146-155.	4.0	146
13	Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Materials Horizons, 2021, 8, 2475-2484.	6.4	142
14	Mechanochromic, Shapeâ€Programmable and Selfâ€Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	136
15	Light-driven bimorph soft actuators: design, fabrication, and properties. Materials Horizons, 2021, 8, 728-757.	6.4	135
16	Toward highly thermally conductive all-carbon composites: Structure control. Carbon, 2016, 109, 575-597.	5.4	132
17	Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. Carbon, 2017, 116, 338-346.	5.4	130
18	Nanocelluloseâ€Based Functional Materials: From Chiral Photonics to Soft Actuator and Energy Storage. Advanced Functional Materials, 2021, 31, 2104991.	7.8	128

#	Article	IF	CITATIONS
19	Bioinspired Phototropic MXeneâ€Reinforced Soft Tubular Actuators for Omnidirectional Lightâ€Tracking and Adaptive Photovoltaics. Advanced Functional Materials, 2022, 32, .	7.8	127
20	Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Scientific Reports, 2013, 3, 3260.	1.6	126
21	A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Materials, 2019, 19, 401-407.	9.5	124
22	Investigation of optical modulated conductance effects based on a graphene oxide–azobenzene hybrid. Carbon, 2010, 48, 3236-3241.	5.4	120
23	Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. Journal of Materials Chemistry A, 2021, 9, 875-883.	5.2	119
24	Frontiers in carbon dots: design, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2571-2601.	3.2	118
25	Self-Healing High Strength and Thermal Conductivity of 3D Graphene/PDMS Composites by the Optimization of Multiple Molecular Interactions. Macromolecules, 2020, 53, 7161-7170.	2.2	118
26	Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2135-2143.	5.2	115
27	Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2014, 115, 227-235.	2.0	114
28	Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon, 2021, 179, 348-357.	5.4	114
29	Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant. Journal of Materials Chemistry C, 2018, 6, 6378-6384.	2.7	105
30	Defective 2D Covalent Organic Frameworks for Postfunctionalization. Advanced Functional Materials, 2020, 30, 1909267.	7.8	103
31	Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: structures, properties and application. Nanoscale, 2012, 4, 6118.	2.8	95
32	Highly Transparent, Self-Healable, and Adhesive Organogels for Bio-Inspired Intelligent Ionic Skins. ACS Applied Materials & Interfaces, 2020, 12, 15657-15666.	4.0	95
33	In-Plane Mosaic Potential Growth of Large-Area 2D Layered Semiconductors MoS ₂ –MoSe ₂ Lateral Heterostructures and Photodetector Application. ACS Applied Materials & Interfaces, 2017, 9, 1684-1691.	4.0	93
34	Assembly of graphene-aligned polymer composites for thermal conductive applications. Composites Communications, 2018, 9, 33-41.	3.3	92
35	Recent Advances in Fluorinated Graphene from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. Advanced Materials, 2022, 34, e2101665.	11.1	90
36	A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage. Journal of Materials Chemistry A, 2015, 3, 11787-11795.	5.2	89

#	Article	IF	CITATIONS
37	Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. Light: Science and Applications, 2022, 11, .	7.7	87
38	Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nature Communications, 2020, 11, 1443.	5.8	84
39	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
40	Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon, 2018, 131, 149-159.	5.4	81
41	Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output. Journal of Materials Chemistry A, 2019, 7, 97-106.	5.2	80
42	Cationic covalent organic framework based all-solid-state electrolytes. Materials Chemistry Frontiers, 2020, 4, 1164-1173.	3.2	80
43	High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon, 2019, 149, 281-289.	5.4	79
44	Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathodes for lithium/fluorinated carbon batteries. Carbon, 2019, 153, 783-791.	5.4	78
45	Two-Dimensional High-Quality Monolayered Triangular WS ₂ Flakes for Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 22435-22444.	4.0	77
46	A sulfonimide-based alternating copolymer asÂa single-ion polymer electrolyte for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 22519-22526.	5.2	74
47	4D-printed untethered self-propelling soft robot with tactile perception: Rolling, racing, and exploring. Matter, 2021, 4, 3313-3326.	5.0	74
48	Recent Advances in Applying Vulcanization/Inverse Vulcanization Methods to Achieve Highâ€Performance Sulfurâ€Containing Polymer Cathode Materials for Li–S Batteries. Small Methods, 2018, 2, 1800156.	4.6	73
49	Infrared-Actuated Recovery of Polyurethane Filled by Reduced Graphene Oxide/Carbon Nanotube Hybrids with High Energy Density. ACS Applied Materials & Interfaces, 2013, 5, 10882-10888.	4.0	71
50	Solid-State Fluorescence of Fluorine-Modified Carbon Nanodots Aggregates Triggered by Poly(ethylene glycol). ACS Applied Materials & Interfaces, 2017, 9, 37981-37990.	4.0	70
51	Large-Scale Synthesis of a Uniform Film of Bilayer MoS ₂ on Graphene for 2D Heterostructure Phototransistors. ACS Applied Materials & Interfaces, 2016, 8, 19004-19011.	4.0	68
52	Deeply fluorinated multi-wall carbon nanotubes for high energy and power densities lithium/carbon fluorides battery. Electrochimica Acta, 2013, 107, 343-349.	2.6	67
53	Structural and Dimensional Transformations between Covalent Organic Frameworks via Linker Exchange. Macromolecules, 2019, 52, 1257-1265.	2.2	67
54	Bioinspired Color-Changing Photonic Polymer Coatings Based on Three-Dimensional Blue Phase Liquid Crystal Networks. ACS Applied Materials & Interfaces, 2021, 13, 41102-41111.	4.0	67

#	Article	IF	CITATIONS
55	Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Composites Science and Technology, 2022, 222, 109406.	3.8	67
56	Surface passivation of carbon dots with ethylene glycol and their high-sensitivity to Fe ³⁺ . RSC Advances, 2017, 7, 2810-2816.	1.7	65
57	A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. Journal of Materials Chemistry A, 2015, 3, 16453-16460.	5.2	63
58	The tunable electrochemical performances of carbon fluorides/manganese dioxide hybrid cathodes by their arrangements. Journal of Power Sources, 2015, 274, 1292-1299.	4.0	62
59	In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries. Energy Storage Materials, 2022, 45, 474-483.	9.5	62
60	High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds. Nanoscale, 2015, 7, 16214-16221.	2.8	61
61	Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon, 2016, 109, 131-140.	5.4	60
62	Stress-sensitive thermally conductive elastic nanocomposite based on interconnected graphite-welded carbon nanotube sponges. Carbon, 2019, 145, 378-388.	5.4	60
63	Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries. Nano Energy, 2021, 82, 105698.	8.2	60
64	Optically Triggered Synchronous Heat Release of Phaseâ€Change Enthalpy and Photoâ€Thermal Energy in Phaseâ€Change Materials at Low Temperatures. Advanced Functional Materials, 2021, 31, 2008496.	7.8	58
65	Enhanced Reversible Photoswitching of Azobenzene-Functionalized Graphene Oxide Hybrids. Langmuir, 2010, 26, 18508-18511.	1.6	57
66	Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2019, 11, 1384-1393.	4.0	56
67	Nitrogen and fluorine co-doped holey graphene hydrogel as a binder-free electrode material for flexible solid-state supercapacitors. Sustainable Energy and Fuels, 2019, 3, 2237-2245.	2.5	55
68	Graphene-based chiral liquid crystal materials for optical applications. Journal of Materials Chemistry C, 2019, 7, 2146-2171.	2.7	54
69	Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity. Nano-Micro Letters, 2022, 14, .	14.4	54
70	Preparation of Novel Fluorescent Nanocomposites Based on Au Nanoclusters and Their Application in Targeted Detection of Cancer Cells. ACS Applied Materials & Interfaces, 2017, 9, 44856-44863.	4.0	52
71	An energy-dense and thermal-stable bis-azobenzene/hybrid templated assembly for solar thermal fuel. Journal of Materials Chemistry A, 2016, 4, 8020-8028.	5.2	51
72	Controlling Heat Release from a Closeâ€Packed Bisazobenzene–Reducedâ€Grapheneâ€Oxide Assembly Film for Highâ€Energy Solidâ€State Photothermal Fuels. ChemSusChem, 2017, 10, 1395-1404.	3.6	50

#	Article	IF	CITATIONS
73	Sonication-assisted liquid-phase exfoliated α-GeTe: a two-dimensional material with high Fe ³⁺ sensitivity. Nanoscale, 2018, 10, 15989-15997.	2.8	48
74	The electrochemical performances of fluorinated hard carbon as the cathode of lithium primary batteries. Composites Communications, 2020, 21, 100396.	3.3	48
75	Guiding Uniformly Distributed Li–Ion Flux by Lithiophilic Covalent Organic Framework Interlayers for High-Performance Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 22586-22596.	4.0	48
76	Electrolyte-Solvent-Modified Alternating Copolymer as a Single-Ion Solid Polymer Electrolyte for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 35683-35692.	4.0	47
77	Controllable and Stable Deformation of a Self-Healing Photo-Responsive Supramolecular Assembly for an Optically Actuated Manipulator Arm. ACS Applied Materials & Interfaces, 2018, 10, 29909-29917.	4.0	46
78	Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties. Journal of Materials Science and Technology, 2022, 98, 169-176.	5.6	42
79	Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks. Carbon, 2022, 196, 902-912.	5.4	42
80	Covalent functionalization of fluorinated graphene through activation of dormant radicals for water-based lubricants. Carbon, 2020, 167, 826-834.	5.4	41
81	3D Interconnected Conductive Graphite Nanoplatelet Welded Carbon Nanotube Networks for Stretchable Conductors. Advanced Functional Materials, 2021, 31, 2107082.	7.8	41
82	Azobenzene-based solar thermal energy storage enhanced by gold nanoparticles for rapid, optically-triggered heat release at room temperature. Journal of Materials Chemistry A, 2020, 8, 18668-18676.	5.2	39
83	Synthesis of photoresponsive azobenzene chromophore-modified multi-walled carbon nanotubes. Carbon, 2007, 45, 2445-2448.	5.4	38
84	Two-dimensional large-scale bandgap-tunable monolayer MoS _{2(1â^'x)} Se _{2x} /graphene heterostructures for phototransistors. Journal of Materials Chemistry C, 2017, 5, 5887-5896.	2.7	38
85	Fluorinated graphene nanoribbons from unzipped single-walled carbon nanotubes for ultrahigh energy density lithium-fluorinated carbon batteries. Science China Materials, 2021, 64, 1367-1377.	3.5	38
86	Contact Engineering of Molybdenum Ditelluride Field Effect Transistors through Rapid Thermal Annealing. ACS Applied Materials & Interfaces, 2017, 9, 30107-30114.	4.0	37
87	Reduced graphene oxide doped predominantly with CF2 groups as a superior anode material for long-life lithium-ion batteries. Chemical Communications, 2018, 54, 2727-2730.	2.2	37
88	Three-Dimensional Multilayer Assemblies of MoS ₂ /Reduced Graphene Oxide for High-Performance Lithium Ion Batteries. Particle and Particle Systems Characterization, 2015, 32, 489-497.	1.2	36
89	Molecular regulation of nano-structured solid-state AZO-SWCNTs assembly film for the high-energy and short-term solar thermal storage. Solar Energy Materials and Solar Cells, 2019, 193, 198-205.	3.0	36
90	Few-layer methyl-terminated germanene–graphene nanocomposite with high capacity for stable lithium storage. Carbon, 2020, 161, 287-298.	5.4	36

#	Article	IF	CITATIONS
91	Fluorine and Nitrogen Dual-Doped Porous Carbon Nanosheet-Enabled Compact Electrode Structure for High Volumetric Energy Storage. ACS Applied Energy Materials, 2020, 3, 4949-4957.	2.5	36
92	Local hydrodynamics modeling of a gas–liquid–solid threeâ€phase bubble column. AICHE Journal, 2007, 53, 2221-2231.	1.8	35
93	Tetracarboxylated Azobenzene/Polymer Supramolecular Assemblies as High-Performance Multiresponsive Actuators. ACS Applied Materials & Interfaces, 2017, 9, 4066-4073.	4.0	35
94	Three-dimensional Covalent Organic Frameworks as Host Materials for Lithium-Sulfur Batteries. Chinese Journal of Polymer Science (English Edition), 2020, 38, 550-557.	2.0	35
95	Solar Thermal Storage and Room-Temperature Fast Release Using a Uniform Flexible Azobenzene-Grafted Polynorborene Film Enhanced by Stretching. Macromolecules, 2019, 52, 4222-4231.	2.2	34
96	Photothermal storage and controllable release of a phase-change azobenzene/aluminum nitride aerogel composite. Composites Communications, 2021, 23, 100575.	3.3	31
97	Anisotropic conductive networks for multidimensional sensing. Materials Horizons, 2021, 8, 2615-2653.	6.4	30
98	The light-switching conductance of an anisotropic azobenzene-based polymer close-packed on horizontally aligned carbon nanotubes. Journal of Materials Chemistry C, 2017, 5, 5068-5075.	2.7	29
99	Alkyl-grafted azobenzene molecules for photo-induced heat storage and release via integration function of phase change and photoisomerization. Composites Communications, 2020, 21, 100402.	3.3	29
100	Azobenzene-Based Solar Thermal Fuels: A Review. Nano-Micro Letters, 2022, 14, .	14.4	28
101	Local Hydrodynamics Modeling of a Gasâ^'Liquidâ^'Solid Three-Phase Airlift Loop Reactor. Industrial & Engineering Chemistry Research, 2007, 46, 5210-5220.	1.8	27
102	Modeling of local dynamic behavior of phenol degradation in an internal loop airlift bioreactor by yeastCandida tropicalis. Biotechnology and Bioengineering, 2007, 97, 251-264.	1.7	27
103	Production of highly-oriented graphite monoliths with high thermal conductivity. Chemical Engineering Journal, 2022, 431, 134102.	6.6	27
104	Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material. Journal of Materials Chemistry C, 2017, 5, 690-696.	2.7	26
105	Cross-linked Single-Ion Solid Polymer Electrolytes with Alternately Distributed Lithium Sources and Ion-Conducting Segments for Lithium Metal Batteries. Macromolecules, 2021, 54, 9135-9144.	2.2	26
106	Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure. Science China Technological Sciences, 2016, 59, 1383-1390.	2.0	25
107	Solid-state high-power photo heat output of 4-((3,5-dimethoxyaniline)-diazenyl)-2- imidazole/graphene film for thermally controllable dual data encoding/reading. Energy Storage Materials, 2020, 24, 662-669.	9.5	25
108	Maximized lithiophilic carbonyl units in covalent organic frameworks as effective Li ion regulators for lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135293.	6.6	25

#	Article	IF	CITATIONS
109	Photo- and Thermosensitive Polymer Membrane with a Tunable Microstructure Doped with Graphene Oxide Nanosheets and Poly(<i>N</i> -isopropylacrylamide) for the Application of Light-Cleaning. ACS Applied Materials & Interfaces, 2020, 12, 14352-14364.	4.0	24
110	Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction. Chinese Physics B, 2014, 23, 028103.	0.7	23
111	<i>In Situ</i> Formed Weave Cage-Like Nanostructure Wrapped Mesoporous Micron Silicon Anode for Enhanced Stable Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 29726-29736.	4.0	22
112	Tetraphenylethylene@Graphene Oxide with Switchable Fluorescence Triggered by Mixed Solvents for the Application of Repeated Information Encryption and Decryption. ACS Applied Materials & Amp; Interfaces, 2019, 11, 35255-35263.	4.0	21
113	Structural Design and Application of Azo-based Supramolecular Polymer Systems. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1183-1199.	2.0	21
114	Different graphene layers to enhance or prevent corrosion of polycrystalline copper. RSC Advances, 2018, 8, 15181-15187.	1.7	20
115	A low cost ultra-microporous carbon scaffold with confined chain-like sulfur molecules as a superior cathode for lithium–sulfur batteries. Sustainable Energy and Fuels, 2018, 2, 2187-2196.	2.5	20
116	Evaporable Glass-State Molecule-Assisted Transfer of Clean and Intact Graphene onto Arbitrary Substrates. ACS Applied Materials & Interfaces, 2019, 11, 16272-16279.	4.0	20
117	Nearâ€Infrared Lightâ€Driven Threeâ€Dimensional Soft Photonic Crystals Loaded with Upconversion Nanoparticles. Advanced Optical Materials, 2022, 10, .	3.6	20
118	Utilisation of photo-thermal energy and bond enthalpy based on optically triggered formation and dissociation of coordination bonds. Nano Energy, 2021, 89, 106401.	8.2	19
119	Spontaneous power generation from broad-humidity atmospheres through heterostructured F/O-bonded graphene monoliths. Nano Energy, 2022, 91, 106605.	8.2	19
120	Aligned artificial solid electrolyte interphase layers as versatile interfacial stabilizers on lithium metal anodes. Journal of Materials Chemistry A, 2022, 10, 10474-10483.	5.2	17
121	Three-dimensional boron nitride network/polyvinyl alcohol composite hydrogel with solid-liquid interpenetrating heat conduction network for thermal management. Journal of Materials Science and Technology, 2022, 127, 183-191.	5.6	16
122	Unidirectional and crystalline organic semiconductor microwire arrays by solvent vapor annealing with PMMA as the assisting layer. Journal of Materials Chemistry C, 2018, 6, 12479-12483.	2.7	15
123	Thermal-assisted self-assembly: a self-adaptive strategy towards large-area uniaxial organic single-crystalline microribbon arrays. Nanoscale, 2019, 11, 12781-12787.	2.8	15
124	Giant Enhancement of Fluorescence Emission by Fluorination of Porous Graphene with High Defect Density and Subsequent Application as Fe ³⁺ Ion Sensors. ACS Applied Materials & Interfaces, 2020, 12, 40662-40672.	4.0	15
125	Photoinduced anisotropic response of azobenzene chromophore functionalized multiwalled carbon nanotubes. Journal of Applied Physics, 2007, 102, 053102.	1.1	14
126	Using multiple hydrogen bonding cross-linkers to access reversibly responsive three dimensional graphene oxide architecture. Nanoscale, 2016, 8, 14139-14145.	2.8	14

#	Article	IF	CITATIONS
127	Interfaceâ€Structureâ€Modulated CuF ₂ /CF <i>_x</i> Composites for Highâ€Performance Lithium Primary Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	14
128	Reversible Modification of Nitrogen-Doped Graphene Based on Se–N Dynamic Covalent Bonds for Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 24360-24366.	4.0	13
129	Polarization-induced alignment of azobenzene/fluorinated polyimide for three-dimensional shape-persistent and photo-responsive elastic helixes. Composites Science and Technology, 2019, 169, 158-166.	3.8	13
130	Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries. Transactions of Tianjin University, 2022, 28, 123-131.	3.3	13
131	Threeâ€Dimensional Nâ€Doped Carbon Nanotube/Graphene Composite Aerogel Anode to Develop Highâ€Power Microbial Fuel Cell. Energy and Environmental Materials, 2023, 6, .	7.3	13
132	Broadband self-powered photoelectrochemical photodetector based on Te/Se heterostructure nanocomposites. Composites Communications, 2022, 32, 101175.	3.3	13
133	Copolymers of aniline and 2-aminoterephthalic acid as a novel cathode material for hybrid supercapacitors. RSC Advances, 2017, 7, 8762-8770.	1.7	12
134	Two-Dimensional GeTe: Air Stability and Photocatalytic Performance for Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2020, 12, 37108-37115.	4.0	12
135	2D molecular crystal templated organic p–n heterojunctions for high-performance ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 5758-5764.	2.7	12
136	Waterâ€resistant conductive organogels with sensation and actuation functions for artificial neuroâ€sensory muscular systems. SmartMat, 2022, 3, 632-643.	6.4	12
137	Fluorination-enabled interface of PtNi electrocatalysts for high-performance high-temperature proton exchange membrane fuel cells. Science China Materials, 2022, 65, 904-912.	3.5	11
138	Amorphous red phosphorus incorporated with pyrolyzed bacterial cellulose as a free-standing anode for high-performance lithium ion batteries. RSC Advances, 2018, 8, 17325-17333.	1.7	10
139	The Fluorination of Boronâ€Doped Graphene for CF <i>_x</i> Cathode with Ultrahigh Energy Density. Energy and Environmental Materials, 2023, 6, .	7.3	10
140	Modeling for local dynamic behaviors of phenol biodegradation in bubble columns. AICHE Journal, 2006, 52, 2864-2875.	1.8	9
141	Metallicâ€Ion Controlled Dynamic Bonds to Coâ€Harvest Isomerization Energy and Bond Enthalpy for Highâ€Energy Output of Flexible Selfâ€Heated Textile. Advanced Science, 2022, 9, e2201657.	5.6	7
142	High-energy and light-actuated phase change composite for solar energy storage and heat release. Surfaces and Interfaces, 2021, 24, 101071.	1.5	6
143	Mechanochromic, Shapeâ€Programmable and Selfâ€Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds. Angewandte Chemie, 2022, 134,	1.6	6
144	Soft template-assisted self-assembly: a general strategy toward two-dimensional molecular crystals for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 2575-2580.	2.7	5

#	Article	IF	CITATIONS
145	Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals. Science China Chemistry, 2020, 63, 973-979.	4.2	3
146	Visible Light-Driven Alkyne-Grafted Ethylene-Bridged Azobenzene Chromophores for Photothermal Utilization. Molecules, 2022, 27, 3296.	1.7	1
147	Innenrücktitelbild: Mechanochromic, Shapeâ€Programmable and Selfâ€Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds (Angew. Chem. 9/2022). Angewandte Chemie, 2022, 134, .	1.6	0