Khaled Rashad Ahmed Abdellatif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5179557/publications.pdf

Version: 2024-02-01

83 papers

2,136 citations

30 h-index 289141 40 g-index

89 all docs 89 docs citations

89 times ranked 2311 citing authors

#	Article	IF	Citations
1	HCV NS5B RdRp mutations and their effects on ligand binding affinity. International Journal of Modelling and Simulation, 2022, 42, 415-425.	2.3	О
2	Design, synthesis and biological evaluation of novel thiohydantoin derivatives as antiproliferative agents: A combined experimental and theoretical assessments. Journal of Molecular Structure, 2022, 1249, 131574.	1.8	13
3	Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on celecoxib scaffold supported with in vivo anti-inflammatory activity, ulcerogenic liability, ADME profiling and docking study. Bioorganic Chemistry, 2022, 120, 105627.	2.0	7
4	Novel pyrazole-oxadiazole hybrids possessing methanesulphonyl pharmacophore with good gastric safety profile: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory activity and histopathological studies. Journal of Molecular Structure, 2022, 1266, 133529.	1.8	3
5	New indomethacin analogs as selective COXâ€2 inhibitors: Synthesis, COXâ€1/2 inhibitory activity, antiâ€inflammatory, ulcerogenicity, histopathological, and docking studies. Archiv Der Pharmazie, 2021, 354, e2000328.	2.1	13
6	Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Medicinal Chemistry Research, 2021, 30, 31-49.	1.1	44
7	Design, synthesis, biological assessment and <i>in silico</i> ADME prediction of new 2-(4-(methylsulfonyl) phenyl) benzimidazoles as selective cyclooxygenase-2 inhibitors. RSC Advances, 2021, 11, 27659-27673.	1.7	8
8	Design, synthesis of new anti-inflammatory agents with a pyrazole core: COX-1/COX-2 inhibition assays, anti-inflammatory, ulcerogenic, histopathological, molecular Modeling, and ADME studies. Journal of Molecular Structure, 2021, 1240, 130554.	1.8	19
9	Optimization of pyrazole-based compounds with 1,2,4-triazole-3-thiol moiety as selective COX-2 inhibitors cardioprotective drug candidates: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory, ulcerogenicity, cardiovascular evaluation, and molecular modeling studies. Bioorganic Chemistry, 2021, 114, 105122.	2.0	18
10	Treatment of breast cancer with engineered novel pH-sensitive triaryl-(Z)-olefin niosomes containing hydrogel: an <i>in vitro</i> and <i>in vivo</i> study. Journal of Liposome Research, 2020, 30, 126-135.	1.5	20
11	New pyrazole derivatives possessing amino/methanesulphonyl pharmacophore with good gastric safety profile: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory activity and histopathological studies. Bioorganic Chemistry, 2020, 95, 103540.	2.0	30
12	Synthesis of novel halogenated triarylpyrazoles as selective COX-2 inhibitors: Anti-inflammatory activity, histopatholgical profile and in-silico studies. Bioorganic Chemistry, 2020, 105, 104418.	2.0	15
13	Design, synthesis, molecular docking and antiproliferative activity of some novel benzothiazole derivatives targeting EGFR/HER2 and TS. Bioorganic Chemistry, 2020, 101, 103976.	2.0	32
14	Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chemistry, 2020, 14, 23.	1.6	23
15	New 1,2,4-triazole/pyrazole hybrids linked to oxime moiety as nitric oxide donor celecoxib analogs: Synthesis, cyclooxygenase inhibition anti-inflammatory, ulcerogenicity, anti-proliferative activities, apoptosis, molecular modeling and nitric oxide release studies. Bioorganic Chemistry, 2020, 98, 103752.	2.0	48
16	Thiohydantoin derivatives incorporating a pyrazole core: Design, synthesis and biological evaluation as dual inhibitors of topoisomerase-I and cycloxygenase-2 with anti-cancer and anti-inflammatory activities. Bioorganic Chemistry, 2019, 91, 103132.	2.0	35
17	New substituted pyrazole derivatives targeting COXs as potential safe anti-inflammatory agents. Future Medicinal Chemistry, 2019, 11, 1871-1882.	1.1	9
18	Design, synthesis of celecoxib-tolmetin drug hybrids as selective and potent COX-2 inhibitors. Bioorganic Chemistry, 2019, 90, 103029.	2.0	13

#	Article	IF	CITATIONS
19	Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR- ¹³ agonists and anti-inflammatory COX-2 selective inhibitors. Bioorganic Chemistry, 2019, 82, 86-99.	2.0	78
20	Design, synthesis and anticancer evaluation of novel spirobenzo[h]chromene and spirochromane derivatives with dual EGFR and B-RAF inhibitory activities. European Journal of Medicinal Chemistry, 2018, 150, 567-578.	2.6	40
21	New advances in synthesis and clinical aspects of pyrazolo[3,4-d]pyrimidine scaffolds. Bioorganic Chemistry, 2018, 78, 341-357.	2.0	43
22	2,4â€Disubstituted Phenylhydrazonopyrazolone and Isoxazolone Derivatives as Antibacterial Agents: Synthesis, Preliminary Biological Evaluation and Docking Studies. ChemistrySelect, 2018, 3, 3295-3301.	0.7	24
23	Non-acidic 1,3,4-trisubstituted-pyrazole derivatives as lonazolac analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorganic Chemistry, 2018, 77, 568-578.	2.0	44
24	Novel 4-methylsulfonylphenyl derivatives as NSAIDS with preferential COX-2 inhibition. Future Medicinal Chemistry, 2018, 10, 53-70.	1.1	11
25	Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Delivery and Translational Research, 2018, 8, 633-644.	3.0	42
26	Design, synthesis, biological evaluation, and nitric-oxide release studies of a novel series of celecoxib prodrugs possessing a nitric-oxide donor moiety. Brazilian Journal of Pharmaceutical Sciences, 2018, 54, .	1.2	2
27	Anti-inflammatory indomethacin analogs endowed with preferential COX-2 inhibitory activity. Future Medicinal Chemistry, 2018, 10, 2521-2535.	1.1	15
28	Design, Synthesis and Cytotoxicity Evaluation of New 3, 5-Disubstituted-2-Thioxoimidazolidinones. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 573-582.	0.9	13
29	Design, synthesis and biological evaluation of new 4-(4-substituted-anilino)quinoline derivatives as anticancer agents. Medicinal Chemistry Research, 2017, 26, 929-939.	1.1	35
30	Synthesis and Biological Evaluation of New Diarylpyrazole and Triarylimidazoline Derivatives as Selective COXâ€⊋ Inhibitors. Archiv Der Pharmazie, 2017, 350, 1600386.	2.1	18
31	New 1,2-diaryl-4-substituted-benzylidene-5-4 H -imidazolone derivatives: Design, synthesis and biological evaluation as potential anti-inflammatory and analgesic agents. Bioorganic Chemistry, 2017, 72, 123-129.	2.0	19
32	Design, synthesis and biological screening of some novel celecoxib and etoricoxib analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorganic Chemistry, 2017, 70, 173-183.	2.0	20
33	Design, synthesis, cyclooxygenase inhibition and biological evaluation of new 1,3,5-triaryl-4,5-dihydro-1 H -pyrazole derivatives possessing amino/methanesulfonyl pharmacophore. Bioorganic Chemistry, 2017, 70, 57-66.	2.0	21
34	Design, Synthesis, Antioxidant and Anticancer Activity of New Coumarin Derivatives Linked with Thiazole, Isoxazole or Pyrazole Moiety. Letters in Drug Design and Discovery, 2017, 14, .	0.4	12
35	Nitric Oxide-NASIDS Donor Prodrugs as Hybrid Safe Anti-inflammatory Agents. Current Topics in Medicinal Chemistry, 2017, 17, 941-955.	1.0	35
36	Synthesis, EGFR Inhibition and Anti-cancer Activity of New 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine Derivatives. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1389-1400.	0.9	24

#	Article	IF	CITATIONS
37	Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1-phenylpyrazolo[3,4- <i>d)]pyrimidine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 6-12.</i>	2.5	42
38	Synthesis, cyclooxygenase inhibition and anti-inflammatory evaluation of new $1,3,5$ -triaryl-4,5-dihydro- $1<$ i> $+<$ i> $+$	2.5	19
39	Synthesis, Cyclooxygenase Inhibition, Antiâ€Inflammatory Evaluation, and Ulcerogenic Liability of New 1,3,5â€Triarylpyrazoline Derivatives Possessing a Methanesulfonyl Pharmacophore. Archiv Der Pharmazie, 2016, 349, 801-807.	2.1	10
40	Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1,5-diarylpyrazole derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 54-60.	2.5	16
41	Synthesis of certain 8-quinolyloxy and/or carbocyclic nitrogenous compounds for microbiological testing. Beni-Suef University Journal of Basic and Applied Sciences, 2016, 5, 147-155.	0.8	O
42	Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1,3,5-triarylpyrazoline and 1,5-diarylpyrazole derivatives as selective COX-2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 406-412.	1.0	45
43	Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorganic Chemistry, 2016, 64, 1-12.	2.0	59
44	3-Methyl-2-phenyl-1-substituted-indole derivatives as indomethacin analogs: design, synthesis and biological evaluation as potential anti-inflammatory and analgesic agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 318-324.	2.5	63
45	DESIGN, SYNTHESIS AND BIOLOGICAL EVALUATION OF NEW PYRROLOAZEPINES WITH POTENTIAL AND SELECTIVE ANTITUMOR ACTIVITY. Acta Poloniae Pharmaceutica, 2016, 73, 359-68.	0.3	3
46	Synthesis, cyclooxygenase inhibition, and anti-inflammatory evaluation of novel diarylheterocycles with a central pyrazole, pyrazoline, or pyridine ring. Medicinal Chemistry Research, 2015, 24, 2632-2644.	1.1	33
47	Synthesis and antimicrobial evaluation of certain purine, benzothiazole and thiazole systems substituted with dialkylaminoalkyl-o-cresols. Beni-Suef University Journal of Basic and Applied Sciences, 2015, 4, 52-59.	0.8	4
48	Synthesis and anti-inflammatory evaluation of new 1,3,5-triaryl-4,5-dihydro-1H-pyrazole derivatives possessing an aminosulphonyl pharmacophore. Archives of Pharmacal Research, 2015, 38, 1932-1942.	2.7	17
49	Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of novel triarylpyrazoline derivatives as selective COX-2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5787-5791.	1.0	36
50	1-(4-Methane(amino)sulfonylphenyl)-3-(4-substituted-phenyl)-5-(4-trifluoromethylphenyl)-1H-2-pyrazolines/pyrazolas potential anti-inflammatory agents. Bioorganic Chemistry, 2015, 63, 13-23.	oles 2.0	27
51	Synthesis, characterization and biological evaluation of novel 4′-fluoro-2′-hydroxy-chalcone derivatives as antioxidant, anti-inflammatory and analgesic agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 484-491.	2.5	28
52	Design, Synthesis and Anticancer Screening of Novel Pyrazole Derivatives Linking to Benzimidazole, Benzoxazole and Benzothiazole. , 2014, S, .		5
53	Design, synthesis and pharmacological evaluation of novel pyrrolizine derivatives as potential anticancer agents. Bioorganic Chemistry, 2014, 53, 1-7.	2.0	30
54	Synthesis of new 1-(4-methane(amino)sulfonylphenyl)-5-(4-substituted-aminomethylphenyl)-3-trifluoromethyl-1H-pyrazoles: A search for novel nitric oxide donor anti-inflammatory agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5015-5021.	1.0	17

#	Article	IF	CITATIONS
55	Synthesis and Anticancer Activity of Some New Pyrazolo[3,4-d]pyrimidin-4-one Derivatives. Molecules, 2014, 19, 3297-3309.	1.7	35
56	Design, synthesis and biological evaluation of novel triaryl (Z)-olefins as tamoxifen analogues. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4960-4963.	1.0	16
57	Synthesis of phenylacetic acid regioisomers possessing an N-substituted 1,2-dihydropyrid-2-one pharmacophore — Evaluation as inhibitors of cyclooxygenases and 5-lipoxygenase. Canadian Journal of Chemistry, 2011, 89, 617-622.	0.6	2
58	Ethanesulfohydroxamic Acid Ester Prodrugs of Nonsteroidal Anti-inflammatory Drugs (NSAIDs): Synthesis, Nitric oxide and Nitroxyl Release, Cyclooxygenase Inhibition, Anti-inflammatory, and Ulcerogenicity Index Studies. Journal of Medicinal Chemistry, 2011, 54, 1356-1364.	2.9	64
59	Triaryl (Z)-olefins suitable for radiolabeling with iodine-124 or fluorine-18 radionuclides for positron emission tomography imaging of estrogen positive breast tumors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1195-1198.	1.0	8
60	A diazen-1-ium-1,2-diolated nitric oxide donor ester prodrug of 3-(4-hydroxymethylphenyl)-4-(4-methanesulfonylphenyl)-5 H -furan-2-one: Synthesis, biological evaluation and nitric oxide release studies. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3951-3956.	1.0	9
61	Synthesis and biological evaluation of N-difluoromethyl-1,2-dihydropyrid-2-one acetic acid regioisomers: Dual Inhibitors of cyclooxygenases and 5-lipoxygenase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2168-2173.	1.0	31
62	Phenylacetic acid regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore: Evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 896-902.	1.0	18
63	Celecoxib analogs possessing a N-(4-nitrooxybutyl)piperidin-4-yl or N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridin-4-yl nitric oxide donor moiety: Synthesis, biological evaluation and nitric oxide release studies. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1324-1329.	1.0	53
64	Celecoxib prodrugs possessing a diazen-1-ium-1,2-diolate nitric oxide donor moiety: Synthesis, biological evaluation and nitric oxide release studies. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4544-4549.	1.0	30
65	Triaryl (Z)-olefins suitable for radiolabeling with carbon-11 or fluorine-18 radionuclides for positron emission tomography imaging of cyclooxygenase-2 expression in pathological disease. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5245-5250.	1.0	7
66	Synthesis and biological evaluation of indomethacin analogs possessing a N-difluoromethyl-1,2-dihydropyrid-2-one ring system: A search for novel cyclooxygenase and lipoxygenase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5776-5780.	1.0	16
67	Comparison between 3-Nitrooxyphenyl acetylsalicylate (NO-ASA) andO2-(acetylsalicyloxymethyl)-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (NONO-ASA) as Safe Anti-Inflammatory, Analgesic, Antipyretic, Antioxidant Prodrugs. Journal of Pharmacology and Experimental Therapeutics. 2010. 335. 443-450.	1.3	30
68	Acyclic triaryl olefins possessing a sulfohydroxamic acid pharmacophore: synthesis, nitric oxide/nitroxyl release, cyclooxygenase inhibition, and anti-inflammatory studies. Organic and Biomolecular Chemistry, 2010, 8, 4124.	1.5	19
69	Synthesis of new 1-(2-, 3-, or 4-methanesulfonylphenyl)-2-[5-(N-hydroxypyridin-2(1H)-one)]acetylene regioisomers: A search for novel cyclooxygenase and lipoxygenase inhibitors. Journal of Heterocyclic Chemistry, 2009, 46, 58-61.	1.4	4
70	Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 5-(4-carboxymethylphenyl)-1-(4-methanesulfonylphenyl)-3-trifluoromethyl-1H-pyrazole and its aminosulfonyl analog: Synthesis, biological evaluation and nitric oxide release studies. Bioorganic and Medicinal Chemistry, 2009, 17, 5182-5188.	1.4	30
71	Synthesis of 1-(methanesulfonyl- and aminosulfonylphenyl)acetylenes that possess a 2-(N-difluoromethyl-1,2-dihydropyridin-2-one) pharmacophore: Evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 584-588.	1.0	17
72	Dinitroglyceryl and diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of aspirin, indomethacin and ibuprofen: Synthesis, biological evaluation and nitric oxide release studies. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3014-3018.	1.0	35

#	Article	IF	CITATIONS
73	Synthesis and biological evaluation of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore: Dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6855-6861.	1.0	31
74	Synthesis of Celecoxib Analogues Possessing a <i>N</i> -Difluoromethyl-1,2-dihydropyrid-2-one 5-Lipoxygenase Pharmacophore: Biological Evaluation as Dual Inhibitors of Cyclooxygenases and 5-Lipoxygenase with Anti-Inflammatory Activity. Journal of Medicinal Chemistry, 2009, 52, 1525-1529.	2.9	161
75	Synthesis of new Heterocyclic Chemistry, 2008, 45, 1707-1710.	1.4	11
76	Synthesis and cyclooxygenase inhibitory activities of linear 1-(methanesulfonylphenyl or) Tj ETQq0 0 0 rgBT /Ove 1948-1956.	erlock 10 T 1.4	rf 50 627 Td 18
77	Diazen-1-ium-1,2-diolated and nitrooxyethyl nitric oxide donor ester prodrugs of anti-inflammatory (E)-2-(aryl)-3-(4-methanesulfonylphenyl)acrylic acids: Synthesis, cyclooxygenase inhibition, and nitric oxide release studies. Bioorganic and Medicinal Chemistry, 2008, 16, 3302-3308.	1.4	20
78	Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 1-(4-methanesulfonylphenyl)-5-aryl-1H-pyrazol-3-carboxylic acids: Synthesis, nitric oxide release studies and anti-inflammatory activities. Bioorganic and Medicinal Chemistry, 2008, 16, 6528-6534.	1.4	30
79	Synthesis of new 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines: A search for novel nitric oxide donor anti-inflammatory agents. Bioorganic and Medicinal Chemistry, 2008, 16, 8882-8888.	1.4	33
80	Diazen-1-ium-1,2-diolated nitric oxide donor ester prodrugs of 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole and its methanesulfonyl analog: Synthesis, biological evaluation and nitric oxide release studies. Bioorganic and Medicinal Chemistry, 2008, 16, 9694-9698.	1.4	32
81	Synthesis and biological evaluation of 1-(benzenesulfonamido)-2-[5-(N-hydroxypyridin-2(1H)-one)]acetylene regioisomers: A novel class of 5-lipoxygenase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4195-4198.	1.0	13
82	Synthesis of celecoxib analogs that possess a N-hydroxypyrid-2(1H)one 5-lipoxygenase pharmacophore: Biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6138-6141.	1.0	45
83	Novel (E)-2-(aryl)-3-(4-methanesulfonylphenyl)acrylic ester prodrugs possessing a diazen-1-ium-1,2-diolate moiety: Design, synthesis, cyclooxygenase inhibition, and nitric oxide release	1.4	18