Jong-Rok Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5179470/publications.pdf

Version: 2024-02-01

38 papers	1,926 citations	25 h-index	330143 37 g-index
39	39	39	2550
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Role of Graphene Family Nanomaterials in Skin Wound Healing and Regeneration. Advances in Experimental Medicine and Biology, 2022, 1351, 89-105.	1.6	5
2	Effects of Microbes from Coal-Related Commercial Humic Substances on Hydroponic Crop Cultivation: A Microbiological View for Agronomical Use of Humic Substances. Journal of Agricultural and Food Chemistry, 2021, 69, 805-814.	5.2	7
3	Which Traits of Humic Substances Are Investigated to Improve Their Agronomical Value?. Molecules, 2021, 26, 760.	3.8	10
4	Transcriptome Changes Reveal the Molecular Mechanisms of Humic Acid-Induced Salt Stress Tolerance in Arabidopsis. Molecules, 2021, 26, 782.	3.8	9
5	Calcium Phosphate Particles Coated with Humic Substances: A Potential Plant Biostimulant from Circular Economy. Molecules, 2021, 26, 2810.	3.8	12
6	Crop root Exudate Compositionâ€Dependent Disassembly of Ligninâ€Feâ€Hydroxyapatite Supramolecular Structures: A Better Rhizosphere Sensing Platform for Smart Fertilizer Development. Advanced Sustainable Systems, 2021, 5, 2100113.	5.3	6
7	Microbial Volatile Organic Compound (VOC)-Driven Dissolution and Surface Modification of Phosphorus-Containing Soil Minerals for Plant Nutrition: An Indirect Route for VOC-Based Plant–Microbe Communications. Journal of Agricultural and Food Chemistry, 2021, 69, 14478-14487.	5.2	1
8	Fungal mycelia functionalization with halloysite nanotubes for hyphal spreading and sorption behavior regulation: A new bio-ceramic hybrid for enhanced water treatment. Water Research, 2020, 186, 116380.	11.3	17
9	Humic acid enhances heat stress tolerance via transcriptional activation of Heat-Shock Proteins in Arabidopsis. Scientific Reports, 2020, 10, 15042.	3.3	31
10	Synergistic Release of Crop Nutrients and Stimulants from Hydroxyapatite Nanoparticles Functionalized with Humic Substances: Toward a Multifunctional Nanofertilizer. ACS Omega, 2020, 5, 6598-6610.	3.5	65
11	Structural variation of humic-like substances and its impact on plant stimulation: Implication for structure-function relationship of soil organic matters. Science of the Total Environment, 2020, 725, 138409.	8.0	30
12	Artificial humification of lignin architecture: Top-down and bottom-up approaches. Biotechnology Advances, 2019, 37, 107416.	11.7	46
13	Sorption behavior of malachite green onto pristine lignin to evaluate the possibility as a dye adsorbent by lignin. Applied Biological Chemistry, 2019, 62, .	1.9	41
14	Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures. Journal of Colloid and Interface Science, 2019, 553, 298-307.	9.4	115
15	Zerovalent-Iron/Platinum Janus Micromotors with Spatially Separated Functionalities for Efficient Water Decontamination. ACS Applied Nano Materials, 2018, 1, 768-776.	5.0	32
16	One-Pot Transformation of Technical Lignins into Humic-Like Plant Stimulants through Fenton-Based Advanced Oxidation: Accelerating Natural Fungus-Driven Humification. ACS Omega, 2018, 3, 7441-7453.	3.5	34
17	Structure and action mechanism of humic substances for plant stimulations. Journal of the Korean Society of Grassland and Forage Science, 2018, 38, 175-179.	0.2	1
18	Fungal Laccase-Catalyzed Oxidation of Naturally Occurring Phenols for Enhanced Germination and Salt Tolerance of <i>Arabidopsis thaliana</i> Journal of Agricultural and Food Chemistry, 2017, 65, 1167-1177.	5.2	42

#	Article	IF	CITATIONS
19	Metal-Chelation-Assisted Deposition of Polydopamine on Human Hair: A Ready-to-Use Eumelanin-Based Hair Dyeing Methodology. ACS Biomaterials Science and Engineering, 2017, 3, 628-636.	5.2	63
20	Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis. Molecules and Cells, 2017, 40, 966-975.	2.6	27
21	Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core–shell magnetic copper alginate beads. Bioresource Technology, 2016, 216, 203-210.	9.6	116
22	Synthesis of Plant Phenol-derived Polymeric Dyes for Direct or Mordant-based Hair Dyeing. Journal of Visualized Experiments, 2016 , , .	0.3	5
23	Dihydroxynaphthaleneâ€based mimicry of fungal melanogenesis for multifunctional coatings. Microbial Biotechnology, 2016, 9, 305-315.	4.2	14
24	Aerobic bacterial catabolism of persistent organic pollutants $\hat{a} \in \text{``}$ potential impact of biotic and abiotic interaction. Current Opinion in Biotechnology, 2016, 38, 71-78.	6.6	30
25	Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. Journal of Hazardous Materials, 2015, 287, 335-341.	12.4	73
26	Enzymatic polymerization of plant-derived phenols for material-independent and multifunctional coating. Journal of Materials Chemistry B, 2013, 1, 6501.	5. 8	54
27	Coupling microbial catabolic actions with abiotic redox processes: A new recipe for persistent organic pollutant (POP) removal. Biotechnology Advances, 2013, 31, 246-256.	11.7	29
28	Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications. Trends in Biotechnology, 2013, 31, 335-341.	9.3	96
29	Laccaseâ€catalysed oxidations of naturally occurring phenols: from <i>in vivo</i> biosynthetic pathways to green synthetic applications. Microbial Biotechnology, 2012, 5, 318-332.	4.2	193
30	Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans. Applied Microbiology and Biotechnology, 2010, 87, 1569-1577.	3.6	24
31	Laccaseâ€catalysed polymeric dye synthesis from plantâ€derived phenols for potential application in hair dyeing: Enzymatic colourations driven by homoâ€or heteroâ€polymer synthesis. Microbial Biotechnology, 2010, 3, 324-335.	4.2	82
32	Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Research, 2010, 44, 298-308.	11.3	118
33	Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. Biodegradation, 2009, 20, 511-519.	3.0	96
34	Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Applied Microbiology and Biotechnology, 2009, 82, 341-350.	3.6	87
35	Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. Journal of Hazardous Materials, 2009, 168, 523-529.	12.4	138
36	Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes. Chemosphere, 2009, 77, 1090-1098.	8.2	70

#	Article	lF	CITATIONS
37	Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Applied Microbiology and Biotechnology, 2008, 81, 783-790.	3.6	60
38	Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst. Journal of Hazardous Materials, 2008, 157, 114-121.	12.4	46