
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5179332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox Hyperactive MOF for Li+, Na+ and Mg2+ Storage. Molecules, 2022, 27, 586.	3.8	2
2	Mononuclear copper(II) complexes of the macrolide antibiotics tylosin and tilmicosin. Transition Metal Chemistry, 2022, 47, 67-76.	1.4	2
3	Structural transformation of Na2Mn2(SO4)3 alluaudite into orthorhombic Li2Mn2(SO4)3 induced after lithium intercalation. Materials Today: Proceedings, 2022, 61, 1260-1264.	1.8	2
4	A Cubic Mg2MnO4 Cathode for non-aqueous Magnesium Batteries. Energy Storage Materials, 2022, 48, 12-19.	18.0	14
5	Purification of Hydrogen from CO with Cu/ZSM-5 Adsorbents. Molecules, 2022, 27, 96.	3.8	2
6	Comparison of the Properties of Ni–Mn Hydroxides/Oxides with Ni–Mn Phosphates for the Purpose of Hybrid Supercapacitors. Batteries, 2022, 8, 51.	4.5	7
7	Dinuclear vs. Mononuclear Copper(II) Coordination Species of Tylosin and Tilmicosin in Non-Aqueous Solutions. Molecules, 2022, 27, 3899.	3.8	2
8	Metal Substitution versus Oxygen-Storage Modifier to Regulate the Oxygen Redox Reactions in Sodium-Deficient Three-Layered Oxides. Batteries, 2022, 8, 56.	4.5	4
9	Layered manganese oxide Mn5O8 as a structural matrix for fast lithium and magnesium intercalation. Journal of Alloys and Compounds, 2021, 851, 156706.	5.5	7
10	Biomass-Derived Carbonaceous Materials to Achieve High-Energy-Density Supercapacitors. Frontiers in Materials, 2021, 8, .	2.4	4
11	Dualâ€Metal Electrolytes for Hybridâ€lon Batteries: Synergism or Antagonism?. ChemPhysChem, 2021, 22, 1110-1123.	2.1	4
12	Mechanochemically Desodiated Na ₄ Fe ₃ (PO ₄) ₂ P ₂ O ₇ as a Lithium and Sodium Storage Material. ACS Applied Energy Materials, 2021, 4, 7182-7189.	5.1	13
13	Reversible Multi-Electron Storage Enabled by Na5V(PO4)2F2 for Rechargeable Magnesium Batteries. Energy Storage Materials, 2021, 38, 462-472.	18.0	21
14	8-Hydroxyquinoline-5-Sulfonic Acid-Containing Poly(Vinyl Alcohol)/Chitosan Electrospun Materials and Their Cu2+ and Fe3+ Complexes: Preparation, Antibacterial, Antifungal and Antitumor Activities. Polymers, 2021, 13, 2690.	4.5	7
15	Oxygen-Storage Materials to Stabilize the Oxygen Redox Activity of Three-Layered Sodium Transition Metal Oxides. Journal of Physical Chemistry Letters, 2021, 12, 7804-7811.	4.6	11
16	Porous Sn obtained by selective electrochemical dissolution of melt-spun Zn70Sn30 alloys with lithium and sodium storage properties. Journal of Alloys and Compounds, 2021, 877, 160319.	5.5	3
17	Iron oxidation to amplify the Na and Li storage capacities of nano-sized maricite NaFePO ₄ . Dalton Transactions, 2021, 50, 16548-16561.	3.3	6
18	Rivalry at the Interface: Ion Desolvation and Electrolyte Degradation in Model Ethylene Carbonate Complexes of Li ⁺ , Na ⁺ , and Mg ²⁺ with PF ₆ [–] on the Li ₄ Ti ₅ O ₁₂ (111) Surface. ACS Omega, 2021, 6, 29735-29745.	3.5	4

#	Article	IF	CITATIONS
19	New Insight into the Interplay of Method of Deposition, Chemical State of Pd, Oxygen Storage Capability and Catalytic Activity of Pd-Containing Perovskite Catalysts for Combustion of Methane. Catalysts, 2021, 11, 1399.	3.5	1
20	Composites between Perovskite and Layered Co-Based Oxides for Modification of the Thermoelectric Efficiency. Materials, 2021, 14, 7019.	2.9	4
21	Hyperbranched Polymers Modified with Dansyl Units and Their Cu(II) Complexes. Bioactivity Studies. Materials, 2020, 13, 4574.	2.9	2
22	Spectroscopic investigations and magnetic measurements on iron-containing barium titanate glass-ceramics. Journal of Non-Crystalline Solids, 2020, 546, 120273.	3.1	1
23	Storage performance of Mg ²⁺ substituted NaMnPO ₄ with an olivine structure. RSC Advances, 2020, 10, 29051-29060.	3.6	16
24	Effect of Alkaline-Basic Electrolytes on the Capacitance Performance of Biomass-Derived Carbonaceous Materials. Materials, 2020, 13, 2941.	2.9	16
25	Spectral characterization, antimicrobial and antibiofilm activity of poly(propylene imine) metallodendrimers in solution and applied onto cotton fabric. International Journal of Polymer Analysis and Characterization, 2020, 25, 374-384.	1.9	3
26	Controlling at Elevated Temperature the Sodium Intercalation Capacity and Rate Capability of P 3â€Na 2/3 Ni 1/2 Mn 1/2 O 2 through the Selective Substitution of Nickel with Magnesium. Batteries and Supercaps, 2020, 3, 1329-1340.	4.7	12
27	Electrospun materials from polylactide and Schiff base derivative of Jeffamine ED® and 8-hydroxyquinoline-2-carboxaldehyde and its complex with Cu2+: Preparation, antioxidant and antitumor activities. Materials Science and Engineering C, 2020, 116, 111185.	7.3	17
28	Hybrid Li/Na Ion Batteries: Temperature-Induced Reactivity of Three-Layered Oxide (P3-Na2/3Ni1/3Mg1/6Mn1/2O2) Toward Lithium Ionic Liquid Electrolytes. Frontiers in Chemistry, 2020, 8, 600140.	3.6	10
29	Synthesis, spectral characteristics and microbiological activity of benzanthrone derivatives and their Cu(II) complexes. Journal of Molecular Structure, 2019, 1197, 576-582.	3.6	12
30	On the cycling stability of biomass-derived carbons as electrodes in supercapacitors. Journal of Alloys and Compounds, 2019, 803, 882-890.	5.5	25
31	Eco-compatible oxides enabling energy storage <i>via</i> Li ⁺ /Mg ²⁺ co-intercalation. Dalton Transactions, 2019, 48, 13641-13650.	3.3	5
32	Iron oxidation state effect on the Mg-Al- Si-O glassy system. Ceramics International, 2019, 45, 21379-21384.	4.8	5
33	New Poly(Propylene Imine) Dendrimer Modified with Acridine and Its Cu(II) Complex: Synthesis, Characterization and Antimicrobial Activity. Materials, 2019, 12, 3020.	2.9	13
34	Crystal and Morphology Design of Dittmarite-Type Ammonium Iron–Manganese Phosphates, NH ₄ Mn _{1–<i>x</i>} Fe _{<i>x</i>} PO ₄ ·H ₂ O, as Precursors for Phospho-olivine Electrodes. Crystal Growth and Design, 2019, 19, 3744-3754.	3.0	13
35	Insights into the Function of Electrode and Electrolyte Materials in a Hybrid Lithium–Sodium Ion Cell. Journal of Physical Chemistry C, 2019, 123, 11508-11521.	3.1	16
36	Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage. Chemical Record, 2019, 19, 474-501.	5.8	21

#	Article	IF	CITATIONS
37	LiMnPO ₄ -olivine deposited on a nanoporous alloy as an additive-free electrode for lithium ion batteries. Dalton Transactions, 2019, 48, 17037-17044.	3.3	2
38	Selective sodium intercalation into sodium nickel–manganese sulfate for dual Na–Li-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 12755-12766.	2.8	14
39	Impact of Cu(<scp>ii</scp>) and Zn(<scp>ii</scp>) ions on the functional properties of new PAMAM metallodendrimers. New Journal of Chemistry, 2018, 42, 7853-7862.	2.8	21
40	Redox properties of alluaudite sodium cobalt manganese sulfates as high-voltage electrodes for rechargeable batteries. Chemical Communications, 2018, 54, 5466-5469.	4.1	12
41	Synthesis, characterisaion and antimicrobial activity of polypropylenamine metallodendrimers modified with 1,8-naphthalimides. Journal of Molecular Structure, 2018, 1164, 363-369.	3.6	12
42	Synthesis, spectral characterization, and <i>in vitro</i> antimicrobial activity in liquid medium and applied on cotton fabric of a new PAMAM metallodendrimer. International Journal of Polymer Analysis and Characterization, 2018, 23, 45-57.	1.9	14
43	Nickel-manganese structured and multiphase composites as electrodes for hybrid supercapacitors. Electrochimica Acta, 2018, 283, 1063-1071.	5.2	12
44	Synthesis, structure and properties of blödite-type solid solutions, Na2Co1â^'xCux(SO4)2·4H2O (Ó < x â‰â€‰0.18), and crystal structure of synthetic kröhnkite, Na2Cu(SO4)2·2H2O. Physics Minerals, 2018, 45, 801-817.	; anol Cher	nis t ry of
45	Cr doped Ca2GeO4, Ca5Ge3O11 and Li2CaGeO4 single crystals grown by the flux method. Journal of Crystal Growth, 2017, 461, 46-52.	1.5	7
46	Effects of the Particle Size Distribution and of the Electrolyte Salt on the Intercalation Properties of <i>P</i> 3-Na _{2/3} Ni _{1/2} Mn _{1/2} O ₂ . Journal of Physical Chemistry C, 2017, 121, 5931-5940.	3.1	30
47	Crystal chemistry of Mg substitution in NaMnPO ₄ olivine: concentration limit and cation distribution. Physical Chemistry Chemical Physics, 2017, 19, 12730-12739.	2.8	17
48	On the formation of solid solutions with blödite- and kröhnkite-type structures. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1925-1937.	3.6	3
49	Mixed sodium nickel-manganese sulfates: Crystal structure relationships between hydrates and anhydrous salts. Journal of Solid State Chemistry, 2017, 250, 49-59.	2.9	14
50	Preparation and characterization of palladium containing nickel–iron–cobalt perovskite catalysts for the complete oxidation of C1–C6 alkanes. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 931-942.	1.7	4
51	Effect of the Electrolyte Alkaline Ions on the Electrochemical Performance of αâ€Ni(OH) ₂ /Activated Carbon Composites in the Hybrid Supercapacitor Cell. ChemistrySelect, 2017, 2, 6693-6698.	1.5	7
52	Combined use of EPR and ²³ Na MAS NMR spectroscopy for assessing the properties of the mixed cobalt–nickel–manganese layers of P3-Na _y Co _{1â^2x} Ni _x Mn _x O ₂ . Physical Chemistry Chemical Physics, 2017, 19, 27065-27073.	2.8	27
53	Structural characterization of 1,8-naphthalimides and inÂvitro microbiological activity of their Cu(II) and Zn(II) complexes. Journal of Molecular Structure, 2017, 1130, 974-983.	3.6	9
54	The Capacitive Performance of Â-Ni(OH)2-Based Composites for Hybrid Supercapacitors. ECS Transactions, 2016, 74, 213-222.	0.5	7

#	Article	IF	CITATIONS
55	Layered <i>P</i> 3-Na _{<i>x</i>} Co _{1/3} Ni _{1/3} Mn _{1/3} O ₂ versus Spinel Li ₄ Ti ₅ O ₁₂ as a Positive and a Negative Electrode in a Full Sodium–Lithium Cell. ACS Applied Materials & amp; Interfaces, 2016, 8, 17321-17333.	8.0	42
56	Synthesis, characterization and inÂvitro antimicrobial activity of a new fluorescent tris-benzo[de]anthracen-7-one and its Cu(II) complex. Tetrahedron, 2016, 72, 2440-2446.	1.9	10
57	Effect of Sodium Content on the Reversible Lithium Intercalation into Sodium-Deficient Cobalt–Nickel–Manganese Oxides Na _{<i>x</i>} Co _{1/3} Ni _{1/3} Mn _{1/3} O ₂ (0.38 â‰₱Tj E	टार्व्युचे ११ व).78Å314 rgE
58	<i>P</i> 3â€Type Layered Sodiumâ€Deficient Nickel–Manganese Oxides: A Flexible Structural Matrix for Reversible Sodium and Lithium Intercalation. ChemPlusChem, 2015, 80, 1642-1656.	2.8	63
59	High-intensity ultrasonication as a way to prepare graphene/amorphous iron oxyhydroxide hybrid electrode with high capacity in lithium battery. Ultrasonics Sonochemistry, 2015, 24, 238-246.	8.2	12
60	A fractal-like electrode based on double-wall nanotubes of anatase exhibiting improved electrochemical behaviour in both lithium and sodium batteries. Physical Chemistry Chemical Physics, 2015, 17, 4687-4695.	2.8	20
61	Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO ₄ covered with carbon black. RSC Advances, 2015, 5, 87694-87705.	3.6	49
62	From kröhnkite- to alluaudite-type of structure: novel method of synthesis of sodium manganese sulfates with electrochemical properties in alkali-metal ion batteries. Journal of Materials Chemistry A, 2015, 3, 22287-22299.	10.3	42
63	Self-organized sodium titanate/titania nanoforest for the negative electrode of sodium-ion microbatteries. Journal of Alloys and Compounds, 2015, 646, 816-826.	5.5	13
64	Improving the Thermoelectric Efficiency of Co Based Ceramics. Materials Today: Proceedings, 2015, 2, 4256-4261.	1.8	5
65	Correlations between lithium local structure and electrochemistry of layered LiCo1â~'2xNixMnxO2oxides:7Li MAS NMR and EPR studies. Physical Chemistry Chemical Physics, 2014, 16, 2499-2507.	2.8	21
66	Sodium deficient nickel–manganese oxides as intercalation electrodes in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 19383-19395.	10.3	46
67	Dittmarite precursors for structure and morphology directed synthesis of lithium manganese phospho-olivine nanostructures. CrystEngComm, 2014, 16, 7515.	2.6	13
68	Structural characterization and electrochemical intercalation of Li+ in layered Na0.65Ni0.5Mn0.5O2 obtained by freeze-drying method. Journal of Solid State Electrochemistry, 2014, 18, 2343-2350.	2.5	14
69	Tunable Ti ⁴⁺ /Ti ³⁺ Redox Potential in the Presence of Iron and Calcium in NASICON-Type Related Phosphates as Electrodes for Lithium Batteries. Chemistry of Materials, 2013, 25, 4025-4035.	6.7	18
70	Study of the nanosized Li2MnO3: Electrochemical behavior, structure, magnetic properties, and vibrational modes. Electrochimica Acta, 2013, 97, 259-270.	5.2	89
71	Precursor-based methods for low-temperature synthesis of defectless NaMnPO4 with an olivine- and maricite-type structure. CrystEngComm, 2013, 15, 9080.	2.6	44
72	Electrochemical intercalation of Li+ into nanodomain Li4Mn5O12. Journal of Alloys and Compounds, 2013, 561, 252-261.	5.5	23

#	Article	IF	CITATIONS
73	Lithium Storage Mechanisms and Effect of Partial Cobalt Substitution in Manganese Carbonate Electrodes. Inorganic Chemistry, 2012, 51, 5554-5560.	4.0	75
74	Long-Length Titania Nanotubes Obtained by High-Voltage Anodization and High-Intensity Ultrasonication for Superior Capacity Electrode. Journal of Physical Chemistry C, 2012, 116, 20182-20190.	3.1	39
75	Improving of the Thermoelectric Efficiency of LaCoO ₃ by Double Substitution with Nickel and Iron. Journal of Physical Chemistry C, 2012, 116, 13507-13515.	3.1	47
76	Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1â^'yFeyO2 (y = 0, 1/3, 2/3). Journal of Materials Chemistry, 2012, 22, 23418.	6.7	55
77	Local structure of Mn4+ and Fe3+ spin probes in layered LiAlO2 oxide by modelling of zero-field splitting parameters. Dalton Transactions, 2011, 40, 9106.	3.3	10
78	The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Transactions, 2011, 40, 9306.	3.3	225
79	High-Voltage LiNi _{1/2} Mn _{3/2} O ₄ Spinel: Cationic Order and Particle Size Distribution. Journal of Physical Chemistry C, 2011, 115, 25170-25182.	3.1	55
80	Soft mechanochemically assisted synthesis of nano-sized LiCoO2 with a layered structure. Journal of Materials Science, 2011, 46, 7106-7113.	3.7	21
81	Nano-domain structure of Li4Mn5O12 spinel. Journal of Materials Science, 2011, 46, 7098-7105.	3.7	27
82	Carbon-coated nano-sized LiFe1â^'xMnxPO4 solid solutions (0Ââ‰ÂxÂâ‰Â1) obtained from phosphate–form precursors. Journal of Materials Science, 2011, 46, 7082-7089.	ate 3.7	24
83	Guest Editor's Editorial: Size Dependent Effects. Journal of Materials Science, 2011, 46, 7067-7067.	3.7	0
84	The electrochemical behavior of low-temperature synthesized FeSn2 nanoparticles as anode materials for Li-ion batteries. Journal of Power Sources, 2011, 196, 6768-6771.	7.8	25
85	On the incorporation of extra Li in lithium cobaltate Li1+xCo1â^'xO2. Solid State Ionics, 2011, 187, 43-49.	2.7	10
86	Facile synthesis of LiMnPO4 olivines with a plate-like morphology from a dittmarite-type KMnPO4·H2O precursor. Dalton Transactions, 2011, 40, 7385.	3.3	26
87	EPR as a tool for the evaluation of novel lyophilized blood products as absorbents for chemical gas masks. Journal of Pharmacy and Bioallied Sciences, 2011, 3, 318.	0.6	1
88	High-Frequency Electron Paramagnetic Resonance Analysis of the Oxidation State and Local Structure of Ni and Mn Ions in Ni,Mn-Codoped LiCoO ₂ . Inorganic Chemistry, 2010, 49, 1932-1941.	4.0	27
89	Nano-crystalline LiMnPO4 prepared by a new phosphate–formate precursor method. Materials Chemistry and Physics, 2010, 121, 370-377.	4.0	40
90	On the preparation of nanosized Al2(WO4)3 by a precipitation method. Solid State Sciences, 2010, 12, 2010-2014.	3.2	12

#	Article	IF	CITATIONS
91	Formation of Metastable Na2CrO4-Type LiNiPO4 from a Phosphate-Formate Precursor. European Journal of Inorganic Chemistry, 2010, 2010, 127-131.	2.0	9
92	Ordered Olivine-Type Lithium-Cobalt and Lithium-Nickel Phosphates Prepared by a New Precursor Method. European Journal of Inorganic Chemistry, 2010, 2010, 4091-4099.	2.0	38
93	Crystal structure, microstructure and reducibility of LaNixCo1â^'xO3 and LaFexCo1â^'xO3 Perovskites (0 <xâ‰@.5). 183,="" 2010,="" 940-950.<="" chemistry,="" journal="" of="" solid="" state="" td=""><td>2.9</td><td>35</td></xâ‰@.5).>	2.9	35
94	Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. Journal of Solid State Chemistry, 2010, 183, 1372-1379.	2.9	124
95	Particle size distribution and electrochemical properties of LiFePO4 prepared by a freeze-drying method. Journal of Physics and Chemistry of Solids, 2010, 71, 848-853.	4.0	27
96	Electron Paramagnetic Resonance, X-ray Diffraction, Mössbauer Spectroscopy, and Electrochemical Studies on Nanocrystalline FeSn ₂ Obtained by Reduction of Salts in Tetraethylene Glycol. Chemistry of Materials, 2010, 22, 2268-2275.	6.7	31
97	Conditions for preparation of nanosized Al2(WO4)3. Journal of Alloys and Compounds, 2010, 505, 443-449.	5.5	10
98	Fe3+ and Ni3+ impurity distribution and electrochemical performance of LiCoO2 electrode materials for lithium ion batteries. Journal of Power Sources, 2009, 194, 494-501.	7.8	18
99	Electrochemical performance and local cationic distribution in layered LiNi1/2Mn1/2O2 electrodes for lithium ion batteries. Electrochimica Acta, 2009, 54, 1694-1701.	5.2	20
100	Local Coordination of Fe ³⁺ in Layered LiCo _{1â^'<i>y</i>} Al _{<i>y</i>} O ₂ Oxides Determined by High-Frequency Electron Paramagnetic Resonance Spectroscopy. Inorganic Chemistry, 2009, 48, 4798-4805.	4.0	10
101	On the Performance of LiNi[sub 1/3]Mn[sub 1/3]Co[sub 1/3]O[sub 2] Nanoparticles as a Cathode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2009, 156, A938.	2.9	64
102	Effect of the synthesis procedure on the local cationic distribution in layered LiNi1/2Mn1/2O2. Journal of Alloys and Compounds, 2009, 475, 96-101.	5.5	23
103	A new phosphate-formate precursor method for the preparation of carbon coated nano-crystalline LiFePO4. Journal of Alloys and Compounds, 2009, 476, 950-957.	5.5	35
104	Effect of the synthesis route on the microstructure and the reducibility of LaCoO3. Journal of Alloys and Compounds, 2009, 480, 279-285.	5.5	30
105	Electrocatalysts for bifunctional oxygen/air electrodes. Journal of Power Sources, 2008, 185, 727-733.	7.8	82
106	EPR study of Ni distribution in LaNi <i>_y</i> Co _{1–<i>y</i>} O ₃ solid solutions (0 ≤i>y ≤0.25). Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1685-1689.	1.8	5
107	Decomposition of ozone on Ag/SiO2 catalyst for abatement of waste gases emissions. Catalysis Today, 2008, 137, 471-474.	4.4	61
108	Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries. Solid State Ionics, 2008, 179, 2198-2208.	2.7	55

#	Article	IF	CITATIONS
109	Electrocatalysts and Electrode Design for Bifunctional Oxygen/Air Electrodes. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 305-310.	0.3	1
110	High-Performance Transition Metal Mixed Oxides in Conversion Electrodes:  A Combined Spectroscopic and Electrochemical Study. Journal of Physical Chemistry C, 2007, 111, 14238-14246.	3.1	58
111	Lithium Insertion into Modified Conducting Domains of Graphitized Carbon Nanotubes. Journal of the Electrochemical Society, 2007, 154, A964.	2.9	14
112	Comparing the Behavior of Nano- and Microsized Particles of LiMn[sub 1.5]Ni[sub 0.5]O[sub 4] Spinel as Cathode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2007, 154, A682.	2.9	110
113	Comparative analysis of the changes in local Ni/Mn environment in lithium–nickel–manganese oxides with layered and spinel structure during electrochemical extraction and reinsertion of lithium. Journal of Power Sources, 2007, 174, 519-523.	7.8	15
114	EPR analysis of the local structure of Ni3+ ions in Ni-based electrode materials obtained under high-pressure. Journal of Materials Science, 2007, 42, 3343-3348.	3.7	10
115	Microstructure of LaCoO3 prepared by freeze-drying of metal–citrate precursors revealed by EPR. Journal of Physics and Chemistry of Solids, 2007, 68, 168-174.	4.0	20
116	Effect of the high pressure on the structure and intercalation properties of lithium–nickel–manganese oxides. Journal of Solid State Chemistry, 2007, 180, 1816-1825.	2.9	9
117	Changes in local Ni/Mn environment in layered LiMgxNi0.5â~'xMn0.5O2(0 ≤ ≤0.10) after electrochemical extraction and reinsertion of lithium. Journal of Materials Chemistry, 2006, 16, 359-369.	6.7	28
118	EPR, NMR, and Electrochemical Studies of Surface-Modified Carbon Microbeads. Chemistry of Materials, 2006, 18, 2293-2301.	6.7	71
119	Coating technique for improvement of the cycling stability of LiCo/NiO2 electrode materials. Journal of Power Sources, 2006, 162, 823-828.	7.8	9
120	EPR studies of Li deintercalation from LiCoMnO4 spinel-type electrode active material. Journal of Power Sources, 2006, 159, 1389-1394.	7.8	31
121	Mn4+ environment in layered Li[Mg0.5â^'xNixMn0.5]O2 oxides monitored by EPR spectroscopy. Journal of Solid State Chemistry, 2006, 179, 378-388.	2.9	48
122	Formation of LiAlyNi1â^'yO2 solid solutions under high and atmospheric pressure. Journal of Solid State Chemistry, 2006, 179, 3151-3158.	2.9	10
123	High-pressure synthesis of solid solutions between trigonal LiNiO2 and monoclinic Li[Li1/3Ni2/3]O2. Journal of Solid State Chemistry, 2005, 178, 1661-1669.	2.9	25
124	High-pressure synthesis and electrochemical behavior of layered oxides. Journal of Solid State Chemistry, 2005, 178, 2692-2700.	2.9	17
125	Effect of allied and alien ions on the EPR spectrum of Mn4+-containing lithium–manganese spinel oxides. Solid State Communications, 2005, 135, 405-410.	1.9	22
126	Modification of Petroleum Coke for Lithium-Ion Batteries by Heat-Treatment with Iron Oxide. Journal of the Electrochemical Society, 2004, 151, A2113.	2.9	19

#	Article	IF	CITATIONS
127	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. Carbon, 2004, 42, 2153-2161.	10.3	21
128	Layered solid solutions of LiNi1â^'xCoxO2with α-LiGaO2obtained under high oxygen pressure. Journal of Materials Chemistry, 2004, 14, 366-373.	6.7	7
129	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. Carbon, 2004, 42, 2153-2153.	10.3	1
130	Changes in the Local Structure of LiMgyNi0.5-yMn1.5O4Electrode Materials during Lithium Extraction. Chemistry of Materials, 2004, 16, 1573-1579.	6.7	107
131	Local Coordination of Low-Spin Ni3+ Probes in Trigonal LiAlyCo1-yO2 Monitored by HF-EPR. Journal of Physical Chemistry B, 2004, 108, 4053-4057.	2.6	29
132	Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO. Solid State Sciences, 2003, 5, 711-720.	3.2	33
133	Lithium/nickel mixing in the transition metal layers of lithium nickelate: high-pressure synthesis of layered Li[LixNi1â^x]O2 oxides as cathode materials for lithium-ion batteries. Solid State Ionics, 2003, 161, 197-204.	2.7	54
134	Electron Paramagnetic Resonance and Solid-State NMR Study of Cation Distribution in LiGayCo1-yO2and Effects on the Electrochemical Oxidation. Journal of Physical Chemistry B, 2003, 107, 4290-4295.	2.6	22
135	Cation order/disorder in lithium transition-metal oxides as insertion electrodes for lithium-ion batteries. Pure and Applied Chemistry, 2002, 74, 1885-1894.	1.9	36
136	High-pressure synthesis of Ga-substituted LiCoO2with layered crystal structure. Journal of Materials Chemistry, 2002, 12, 2501-2506.	6.7	15
137	EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries. Carbon, 2002, 40, 2301-2306.	10.3	52
138	Structural Characterization of Mg Treated LiCoO2 Intercalation Compounds. , 2002, , 463-468.		1
139	Carbon-Based Negative Electrodes of Lithium-Ion Batteries Obtained from Residua of the Petroleum Industry. , 2002, , 101-108.		0
140	Short-Range Co/Mn Ordering and Electrochemical Intercalation of Li into Li[Mn2-yCoy]O4 SPINELS, O <yâ‰\$. , 2002, , 475-482.</yâ‰		0
141	Cobalt(III) Effect on27Al NMR Chemical Shifts in LiAlxCo1-xO2. Journal of Physical Chemistry B, 2001, 105, 8081-8087.	2.6	40
142	Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochemistry Communications, 2001, 3, 410-416.	4.7	177
143	Co/Mn distribution and electrochemical intercalation of Li into Li[Mn2â^'yCoy]O4 spinels, 0 <yâ‰⊈. 140,="" 19-33.<="" 2001,="" ionics,="" solid="" state="" td=""><td>2.7</td><td>22</td></yâ‰⊈.>	2.7	22
144	Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. Carbon, 2000, 38, 1031-1041.	10.3	136

#	Article	IF	CITATIONS
145	EPR of Mn 4+ in spinels Li 1+x Mn 2â^'x O 4 with 0≤ ≩.1. Journal of Physics and Chemistry of Solids, 2000, 61, 609-614.	4.0	52
146	EPR monitoring of Mn 4+ distribution in Li 4 Mn 5 O 12 spinels. Journal of Physics and Chemistry of Solids, 2000, 61, 615-620.	4.0	38
147	Aluminium coordination in LiNi1â^'yAlyO2 solid solutions. Solid State Ionics, 2000, 128, 1-10.	2.7	42
148	EPR evidence on short-range Co/Mn order in LiCoMnO4 spinels. Journal of Materials Chemistry, 2000, 10, 1377-1381.	6.7	29
149	Microstructure of Li1+xMn2-xO4 Cathode Materials Monitored by EPR of Mn4+. , 2000, , 485-489.		1
150	EPR Studies on the Microstructure of Lini1-yCoyO2 Electrode Materials for Lithium-Ion Batteries. , 2000, , 491-495.		0
151	Recent advances in the study of layered lithium transition metal oxides and their application as intercalation electrodes. Journal of Solid State Electrochemistry, 1999, 3, 121-134.	2.5	74
152	Microstructure of Li1+xMn2â^'xO4 spinels obtained from metal-organic precursors. Journal of Materials Chemistry, 1999, 9, 1559-1567.	6.7	33
153	13C, 1H, 6Li Magic-Angle Spinning Nuclear Magnetic Resonance, Electron Paramagnetic Resonance, and Fourier Transform Infrared Study of Intercalation Electrodes Based in Ultrasoft Carbons Obtained below 3100 K. Chemistry of Materials, 1999, 11, 52-60.	6.7	25
154	SPES, 6Li MAS NMR, and Ni3+ EPR evidence for the formation of Co2+-containing spinel phases in LiCoO2 cycled electrode materials. Journal of Electroanalytical Chemistry, 1998, 454, 173-181.	3.8	16
155	X-ray Diffraction, EPR, and 6Li and 27Al MAS NMR Study of LiAlO2â^'LiCoO2 Solid Solutions. Inorganic Chemistry, 1998, 37, 264-269.	4.0	62
156	Changes in Structure and Cathode Performance with Composition and Preparation Temperature of Lithium Cobalt Nickel Oxide. Journal of the Electrochemical Society, 1998, 145, 730-736.	2.9	53
157	Lithiumâ ^{~'} Nickel Citrate Precursors for the Preparation of LiNiO2 Insertion Electrodes. Chemistry of Materials, 1997, 9, 2145-2155.	6.7	51
158	Ultrafine layered LiCoO2 obtained from citrate precursors. Ionics, 1997, 3, 1-15.	2.4	2
159	EPR studies of Li1â^'x(NiyCo1â^'y)1+xO2 solid solutions. Solid State Communications, 1997, 102, 457-462.	1.9	34
160	Electrocatalytic activity of spinel related cobalties MxCo3â^'xO4 (M = Li, Ni, Cu) in the oxygen evolution reaction. Journal of Electroanalytical Chemistry, 1997, 429, 157-168.	3.8	217
161	Structure and Electrochemical Properties of Boron-Doped LiCoO2. Journal of Solid State Chemistry, 1997, 134, 265-273.	2.9	140
162	Lithiumâ^'Cobalt Citrate Precursors in the Preparation of Intercalation Electrode Materials. Chemistry of Materials, 1996, 8, 1429-1440.	6.7	107

#	Article	IF	CITATIONS
163	Lithium doping of cobalt-nickel spinel oxides at low temperatures. Materials Research Bulletin, 1996, 31, 593-602.	5.2	1
164	Ozone decomposition and CO oxidation on CeO2. Journal of Molecular Catalysis A, 1995, 98, 9-14.	4.8	86
165	Chemically deintercalated cathode materials for lithium cells. Ionics, 1995, 1, 246-250.	2.4	2
166	Structure and Electrochemical Properties of Li1 â^' x  ( Ni y Co1 â^' y  ) 1 at 0°C. Journal of the Electrochemical Society, 1995, 142, 3997-4005.	9+ x â 2.9	€‰O 2
167	Lithium Doping of Cobalt-Nickel Spinel Oxides at Low Temperature. Materials Science Forum, 1994, 152-153, 323-326.	0.3	0
168	New Data on Chemical Delithiation of LixNi2-xO2 (0.6 < x < 1). Journal of Solid State Chemistry, 1994, 108, 211-218.	2.9	8
169	Li1-x-yHyCoO2: Metastable Layered Phases Obtained by Acid Digestion of LiCoO2(O3). Journal of Solid State Chemistry, 1994, 109, 47-52.	2.9	31
170	Acid-Delithiated Li1-x(NiyCo1-y)1+xO2 as Insertion Electrodes in Lithium Batteries. Journal of Solid State Chemistry, 1994, 113, 182-192.	2.9	25
171	Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1â^'yO2 solid solutions. Solid State Ionics, 1994, 73, 233-240.	2.7	123
172	Ni3+ â^'Ni2+ segregation in LixNi2â^'xO2 solid solutions (0.6 ⩽x < 1). Solid State Ionics, 1994, 73, 1-7.	2.7	27
173	Selective Oxidation of Methanol on Iron-Chromium-Molybdenum Oxide Catalysts. Studies in Surface Science and Catalysis, 1994, 82, 787-794.	1.5	1
174	Stabilization of the layered crystal structure of LiNiO2 by Co-substitution. Solid State Ionics, 1993, 66, 143-149.	2.7	225
175	"Sandwich―type clusters revealed by EPR of Ni3+ in a partially ordered LixNi1â^'xO (x â‹•0.3). Solid State Ionics, 1993, 59, 17-24.	2.7	17
176	Electrocatalytic activity of LixNi1â^'xO (0 ≤ < 0.5) solid solutions in the oxygen evolution reaction. Journal of Electroanalytical Chemistry, 1993, 362, 119-127.	3.8	8
177	Magnetic interactions in layered LiNiO2 revealed by EPR of Ni3+. Journal of Physics and Chemistry of Solids, 1993, 54, 9-13.	4.0	35
178	Hydrogen absorption by nickel-containing vanadium-titanium alloys. Materials Research Bulletin, 1993, 28, 377-384.	5.2	3
179	Cobalt hydroxide nitrate hydrate, Co(OH)(NO3).cntdot.H2O: a novel double-chain compound with competing interactions. Inorganic Chemistry, 1992, 31, 1514-1517.	4.0	45
180	EPR study of Ni3+-DOPED ACoO2 (A = H, Li) powders. Journal of Physics and Chemistry of Solids, 1992, 53, 443-448.	4.0	26

#	Article	IF	CITATIONS
181	Interaction between the components of a LiClî— Co3O4 catalyst for oxidative coupling of methane. Journal of Molecular Catalysis, 1992, 77, 343-351.	1.2	0
182	Low-temperature preparation of a lithium-cobalt spinel (Li0.35Co2.65O4) by thermal decomposition of CoOOH in a LiNO3 melt. Materials Research Bulletin, 1991, 26, 1315-1322.	5.2	16
183	Doping of Co3O4 with lithium by a solid state reaction in air. III. EPR evidence of intrinsic disorder reactions in the tetrahedral interstitials. Materials Chemistry and Physics, 1990, 26, 239-244.	4.0	14
184	Doping of Co3O4 with lithium by a solid-state reaction in air I. Oxidation degree and coordination of cations. Materials Chemistry and Physics, 1990, 25, 351-360.	4.0	19
185	Doping of Co3O4 with lithium by a solid state reaction in air II. Distribution of lithium in the solid solution. Materials Chemistry and Physics, 1990, 25, 361-373.	4.0	11
186	Localization of COâ^2 anion radicals in strontium carbonate obtained by thermal decomposition of strontium oxalate. Journal of Physics and Chemistry of Solids, 1990, 51, 1163-1169.	4.0	0
187	Emission spectra of CO2â^' radicals, stabilized in SrCO3 obtained by thermal decomposition of SrC2O4·H2O. Chemical Physics, 1990, 147, 415-420.	1.9	0
188	Bulk defects in Co3O4, pure and slightly doped with lithium, revealed by EPR of the tetrahedral Co2+ ions. Journal of Physics and Chemistry of Solids, 1990, 51, 1157-1161.	4.0	37
189	Identification of the center of self-activated luminescence in strontium carbonate by doping with lithium. Journal of Physics and Chemistry of Solids, 1989, 50, 95-97.	4.0	5
190	Luminescence and EPR studies on strontium carbonate obtained by thermal decomposition of strontium oxalate. Journal of Physics and Chemistry of Solids, 1986, 47, 409-412.	4.0	37
191	Raman Spectroscopy Study on Na _{2/3} Mn _{1-x} Fe _x O ₂ Oxides. Advances in Science and Technology, 0, , .	0.2	21