Yong Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5179159/publications.pdf

Version: 2024-02-01

		279487	243296
89	2,174	23	44
papers	citations	h-index	g-index
89	89	89	2757
all docs	docs citations	times ranked	citing authors
89 all docs	89 docs citations	89 times ranked	2757 citing authors

#	Article	IF	CITATIONS
1	Biodegradable T2-phage-like Janus nanoparticles for actively-targeted and chemo-photothermal synergistic therapy. Chemical Engineering Journal, 2022, 428, 131284.	6.6	10
2	Preparation of fluorescence-encoded microbeads with large encoding capacities and application of suspension array technology. New Journal of Chemistry, 2022, 46, 6986-6994.	1.4	1
3	Fabrication of Fe ₃ O ₄ @poly(methyl methacrylate- <i>co</i> glycidyl) Tj ETQq1 1 0.784. templates for removal of cationic dyes. New Journal of Chemistry, 2022, 46, 13442-13453.	1.4 rgBT	Overlock 101
4	Two-dimensional cellulose acetate membrane-supported mesoporous silica nanosheets for efficient nanosize-based molecules separation. Journal of Molecular Liquids, 2022, 363, 119827.	2.3	0
5	A tough chitosan-alginate porous hydrogel prepared by simple foaming method. Journal of Solid State Chemistry, 2021, 294, 121797.	1.4	18
6	Silver nanoparticles decorated magnetic polymer composites (Fe3O4@PS@Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes. Journal of Environmental Management, 2021, 278, 111473.	3.8	49
7	Preparation of "pomegranate―like QD/SiO ₂ /poly(St- <i>co</i> hi>-MAA) fluorescent nanobeads in two steps to improve stability and biocompatibility. New Journal of Chemistry, 2021, 45, 10618-10625.	1.4	3
8	Preparation of Fe ₃ O ₄ @PMAA@Ni Microspheres towards the Efficient and Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine-Rich Proteins. ACS Applied Materials & Selective Enrichment of Histidine Enrichment	4.0	24
9	Photo-polymerized and thermal-polymerized silicon hydrogels with different surface microstructure and wettability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126284.	2.3	3
10	Preparation of a BTA–UIO–GO nanocomposite to endow coating systems with active inhibition and passive anticorrosion performances. New Journal of Chemistry, 2021, 45, 16069-16082.	1.4	12
11	Fabrication of Yolk–Shell Fe ₃ O ₄ @NiSiO ₃ /Ni Microspheres for Efficient Purification of Histidine-Rich Proteins. Langmuir, 2021, 37, 14167-14176.	1.6	2
12	Novel magnetic and flame-retardant superhydrophobic sponge for solar-assisted high-viscosity oil/water separation. Progress in Organic Coatings, 2020, 139, 105369.	1.9	37
13	Hypoxia-augmented and photothermally-enhanced ferroptotic therapy with high specificity and efficiency. Journal of Materials Chemistry B, 2020, 8, 78-87.	2.9	34
14	Bioinspired DNA self-assembly for targeted cancer cell imaging and drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124182.	2.3	7
15	Bioinspired DNA nanocockleburs for targeted delivery of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110733.	2.5	6
16	Facile fabrication of durable superamphiphobic PET fabrics. Journal of Coatings Technology Research, 2020, 17, 711-718.	1.2	15
17	Magnetically Superamphiphobic Nanoparticles for Magnetic Response Surface Preparation. Langmuir, 2020, 36, 14318-14323.	1.6	5
18	Biomacromolecular fluorescent nanoparticles co-assembled by bovine serum albumin and DNA segments for living cell imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125255.	2.3	1

#	Article	IF	Citations
19	Highly sensitive hair springs to measure the contraction force of engineered cardiac tissues. Materials Horizons, 2020, 7, 1327-1330.	6.4	1
20	Surface-initiated polymerization for the preparation of magnetic polymer composites. Polymer Chemistry, 2020, 11, 1797-1805.	1.9	6
21	Durable superhydrophobic coating based on inorganic/organic double-network polysiloxane and functionalized nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123550.	2.3	23
22	Synthesis of Fe3O4@SiO2-PHEMA via redox of H2O2 and Fe2+ for efficient removal of Cu2+ from aqueous solution. Journal of Molecular Liquids, 2019, 296, 111865.	2.3	7
23	Selfâ€Healing Properties of PDMS Elastomers via Guanine and Cytosine Base Pairs. Macromolecular Chemistry and Physics, 2019, 220, 1900280.	1.1	11
24	Improving the wettability and antiprotein adsorption property of PDMS by swelling–deswelling approach. Journal of Coatings Technology Research, 2019, 16, 353-361.	1.2	4
25	Robust solventâ€free fabrication and characterization of (polydimethylsiloxaneâ€coâ€2â€hydroxyethylmethacrylate)/poly (ethylene glycol) methacrylate (PDMSâ€HEMA)/PEGMA hydrogels. Polymers for Advanced Technologies, 2019, 30, 1922-1932.	1.6	3
26	Environmentally safe, durable and transparent superhydrophobic coating prepared by one-step spraying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 147-155.	2.3	45
27	A novel pH-responsive hollow mesoporous silica nanoparticle (HMSN) system encapsulating doxorubicin (DOX) and glucose oxidase (GOX) for potential cancer treatment. Journal of Materials Chemistry B, 2019, 7, 3291-3302.	2.9	51
28	Design and synthesis of organo-silica shell based dual-functional microencapsulated phase change material for thermal regulating systems. Chemical Papers, 2018, 72, 1055-1064.	1.0	5
29	Fabrication of a superamphiphobic coating by a simple and flexible method. Particuology, 2018, 39, 33-39.	2.0	10
30	The formation of fibers via complementary base pairing of DNA-conjugated bovine serum albumin. Chinese Chemical Letters, 2018, 29, 461-463.	4.8	2
31	A bio-based environment-friendly membrane with facile preparation process for oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 18-22.	2.3	39
32	Reverse hydrophobic PDMS surface to hydrophilic by 1â€step hydrolysis reaction. Polymers for Advanced Technologies, 2018, 29, 2103-2109.	1.6	7
33	Hydrophilic surface modification of polydimetylsiloxaneâ€coâ€2â€hydroxyethylmethacrylate (PDMSâ€HEMA) by Silwet Lâ€77 (heptamethyltrisiloxane) surface treatment. Polymers for Advanced Technologies, 2018, 29, 2601-2611.	1.6	13
34	Roles of alcohol desolvating agents on the size control of bovine serum albumin nanoparticles in drug delivery system. Journal of Drug Delivery Science and Technology, 2018, 47, 193-199.	1.4	16
35	Wet Chemical Synthesis of Silica Nanosheets via Ethyl Acetateâ€Mediated Hydrolysis of Silica Precursors and Their Applications. Small, 2017, 13, 1603369.	5.2	27
36	Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	9

#	Article	lF	CITATIONS
37	Assembling gold nanoparticles into flower-like structures by complementary base pairing of DNA molecules with mediation by apoferritins. Chemical Communications, 2017, 53, 4581-4584.	2.2	4
38	A facile and low-cost preparation of durable amphiphobic coatings with fluoride–silica@poly(methacrylic acid) hybrid nanocomposites. Journal of Coatings Technology Research, 2017, 14, 1369-1380.	1.2	4
39	Multifunctional sensors based on silicone hydrogel and their responses to solvents, <scp>pH</scp> and solution composition. Polymer International, 2017, 66, 566-572.	1.6	8
40	Preparation of poly (octadecyl methacrylate)/silica-(3-methacryloxypropyl trimethoxysilane)/silica multi-layer core-shell nanocomposite with thermostable hydrophobicity and good viscosity break property. Chemical Engineering Journal, 2017, 307, 891-896.	6.6	23
41	Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage. Tenside, Surfactants, Detergents, 2017, 54, 32-37.	0.5	3
42	A highly expandable and tough polyacrylamide – alginate microcapsule. RSC Advances, 2016, 6, 44896-44901.	1.7	4
43	A multi-responsive multicomponent hydrogel with micro-phase separation structure: Synthesis and special drug release. Journal of Drug Delivery Science and Technology, 2016, 35, 184-189.	1.4	7
44	Preparation and properties of a formâ€stable phaseâ€change hydrogel for thermal energy storage. Journal of Applied Polymer Science, 2016, 133, .	1.3	24
45	The influence of vulcanizer on the crystal transform of iPP during reactive extrusion process. Polymer Degradation and Stability, 2016, 126, 125-133.	2.7	1
46	One-pot fabrication of fluoride-silica@silica raspberry-like nanoparticles for superhydrophobic coating. Ceramics International, 2016, 42, 14601-14608.	2.3	23
47	A pH responsive micelle combined with Au nanoparticles for multi-stimuli release of both hydrophobic and hydrophilic drug. RSC Advances, 2016, 6, 58654-58657.	1.7	2
48	The influence of the surface properties of silicon–fluorine hydrogel on protein adsorption. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1113-1119.	2.5	12
49	Self-assembling amphiphilic poly(propargyl methacrylate) grafted DNA copolymers into multi-strand helices. Soft Matter, 2015, 11, 5610-5613.	1.2	8
50	DNA-caged gold nanoparticles for controlled release of doxorubicin triggered by a DNA enzyme and pH. Chemical Communications, 2015, 51, 12996-12999.	2.2	17
51	The Relationship between the Hydrophilicity and Surface Chemical Composition Microphase Separation Structure of Multicomponent Silicone Hydrogels. Journal of Physical Chemistry B, 2015, 119, 9780-9786.	1.2	19
52	Preparation and properties of stretchable and tough alginate/polyacrylamide hollow capsules. RSC Advances, 2015, 5, 33262-33268.	1.7	9
53	Preparation and properties of controllable amphiphilic P(NIPAM-co-LMA) gel for drug delivery. Journal of Drug Delivery Science and Technology, 2015, 29, 245-250.	1.4	6
54	Copolymerization and properties of multicomponent crosslinked hydrogels. Chinese Journal of Polymer Science (English Edition), 2015, 33, 173-183.	2.0	15

#	Article	IF	Citations
55	The Relationship between Oxygen Permeability and Phase Separation Morphology of the Multicomponent Silicone Hydrogels. Journal of Physical Chemistry B, 2014, 118, 14640-14647.	1.2	37
56	Threading different metal nanomaterials on natural PhiX174 DNA to assemble a necklace. RSC Advances, 2014, 4, 47268-47271.	1.7	3
57	Nuclease-responsive DNA–PEI hollow microcapsules for bio-stimuli controlled release. Journal of Materials Chemistry B, 2014, 2, 1667-1672.	2.9	17
58	Detecting the Oligomeric State of <i>Escherichia coli</i> MutS from Its Geometric Architecture Observed by an Atomic Force Microscope at a Single Molecular Level. Journal of Physical Chemistry B, 2014, 118, 9218-9224.	1.2	5
59	RGDC Functionalized Titanium Dioxide Nanoparticles Induce Less Damage to Plasmid DNA but Higher Cytotoxicity to HeLa Cells. Journal of Physical Chemistry B, 2013, 117, 125-131.	1.2	21
60	Single-bit failure analysis at a nanometer resolution by conductive atomic force microscopy. Microelectronics Reliability, 2012, 52, 159-164.	0.9	4
61	Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair. EMBO Journal, 2011, 30, 2881-2893.	3.5	37
62	Separating DNA with Different Topologies by Atomic Force Microscopy in Comparison with Gel Electrophoresis. Journal of Physical Chemistry B, 2010, 114, 12162-12165.	1.2	12
63	UVA Generates Pyrimidine Dimers in DNA Directly. Biophysical Journal, 2009, 96, 1151-1158.	0.2	132
64	Detecting Solvent-Driven Transitions of poly(A) to Double-Stranded Conformations by Atomic Force Microscopy. Biophysical Journal, 2009, 96, 2918-2925.	0.2	14
65	Nanoscale Detection of Ionizing Radiation Damage to DNA by Atomic Force Microscopy. Small, 2008, 4, 288-294.	5.2	22
66	AFM Studies of the Molecular Weight Dependence of Lamellar Growth Kinetics of Polymers near the Glass Transition Temperature. Macromolecules, 2007, 40, 4002-4008.	2.2	9
67	Pulling Geometry-Induced Errors in Single Molecule Force Spectroscopy Measurements. Biophysical Journal, 2007, 92, L76-L78.	0.2	33
68	Detecting Ultraviolet Damage in Single DNA Molecules by Atomic Force Microscopy. Biophysical Journal, 2007, 93, 1758-1767.	0.2	53
69	Organization process of the hierarchical structures in microbially synthesized polyhydroxyalkanoates. Current Applied Physics, 2007, 7, e41-e44.	1.1	2
70	Nanospring behaviour of ankyrin repeats. Nature, 2006, 440, 246-249.	13.7	354
71	Study on morphology and orientation of cellulose in the vascular bundle of wheat straw. Polymer, 2005, 46, 5689-5694.	1.8	43
72	Light-Scattering Study of the Aggregation of Syndiotactic Poly(methyl methacrylate) in Solution. ChemPhysChem, 2004, 5, 1745-1749.	1.0	6

#	Article	IF	Citations
73	Depletion-Induced Nonbirefringent Banding in Thin Isotactic Polystyrene Thin Films. Macromolecules, 2004, 37, 9283-9286.	2.2	91
74	Real-Time Observation of Lamellar Branching Induced by an AFM Tip and the Stability of Induced Nuclei. Langmuir, 2004, 20, 8220-8223.	1.6	12
75	Direct AFM Observation of Crystal Twisting and Organization in Banded Spherulites of Chiral Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 2004, 37, 4118-4123.	2.2	159
76	XPS Investigation of the Spherulite Surface for Poly($\hat{l}\mu$ -caprolactone)/poly(vinyl chloride). Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 47-49.	2.2	1
77	Observation of banded spherulites and lamellar structures by atomic force microscopy. Science in China Series B: Chemistry, 2003, , 152.	0.8	1
78	Conformational changes in the induction period of crystallization as measured by FT-IR. Polymer, 2003, 44, 3509-3513.	1.8	23
79	Growth process of homogeneously and heterogeneously nucleated spherulites as observed by atomic force microscopy. Polymer, 2003, 44, 4673-4679.	1.8	35
80	Melting Behaviors of Lamellar Crystals of Poly(bisphenol A-co-decane ether) Studied by in-Situ Atomic Force Microscopy. Langmuir, 2003, 19, 8010-8018.	1.6	18
81	Surface Properties of Poly(3-hydroxybutyrate-co-3- hydroxyvalerate) Banded Spherulites Studied by Atomic Force Microscopy and Time-of-Flight Secondary Ion Mass Spectrometry. Langmuir, 2003, 19, 7417-7422.	1.6	32
82	Lamellar Branching of Poly(bisphenol A-co-decane) Spherulites at Different Temperatures Studied by High-Temperature AFM. Macromolecules, 2003, 36, 3652-3655.	2.2	49
83	Real-time AFM study of lamellar growth of semi-crystalline polymers. Macromolecular Symposia, 2003, 192, 271-280.	0.4	3
84	The Birth of an Embryo and Development of the Founding Lamella of Spherulites As Observed by Atomic Force Microscopy. Macromolecules, 2002, 35, 6751-6753.	2.2	67
85	Recent progresses of polymer crystallization studied by AFM. Science Bulletin, 2002, 47, 1761-1765.	4.3	0
86	Study on transition characteristics of PEG/CDA solid–solid phase change materials. Polymer, 2002, 43, 117-122.	1.8	139
87	Structural changes during isothermal crystallization of a poly(bisphenol A-co-decane ether) polymer. Polymer, 2002, 43, 5615-5621.	1.8	6
88	Recent progresses of polymer crystallization studied by AFM. Science Bulletin, 2002, 47, 1761.	1.7	1
89	COMPARATIVE STUDIES OF THE STRUCTURES AND TRANSITION CHARACTERISTICS OF CELLULOSE DIACETATE MODIFIED WITH POLYETHYLENE GLYCOL PREPARED BY CHEMICAL BONDING AND PHYSICAL BLENDING METHODS*. Journal of Macromolecular Science - Physics, 2001, 40, 1053-1068.	0.4	35