Ravindra Majeti

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5178680/ravindra-majeti-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13,387 46 115 110 h-index g-index citations papers 118 16,877 6.47 14.8 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
110	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication <i>Nature Medicine</i> , 2022 ,	50.5	6
109	CytofIn enables integrated analysis of public mass cytometry datasets using generalized anchors <i>Nature Communications</i> , 2022 , 13, 934	17.4	0
108	Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia <i>Nature Communications</i> , 2022 , 13, 2614	17.4	О
107	Gene replacement of Eglobin with Eglobin restores hemoglobin balance in Ethalassemia-derived hematopoietic stem and progenitor cells. <i>Nature Medicine</i> , 2021 , 27, 677-687	50.5	13
106	Monocytic differentiation and AHR signaling as Primary Nodes of BET Inhibitor Response in Acute Myeloid Leukemia. <i>Blood Cancer Discovery</i> , 2021 , 2, 518-531	7	7
105	Clonal Hematopoiesis: From Mechanisms to Clinical Intervention. Cancer Discovery, 2021,	24.4	3
104	NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. <i>Blood Cancer Discovery</i> , 2021 , 2, 648-665	7	3
103	The TRACE-Seq method tracks recombination alleles and identifies clonal reconstitution dynamics of gene targeted human hematopoietic stem cells. <i>Nature Communications</i> , 2021 , 12, 472	17.4	7
102	Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia <i>Nature Communications</i> , 2021 , 12, 7244	17.4	1
101	CD34 expression does not correlate with immunophenotypic stem cell or progenitor content in human cord blood products. <i>Blood Advances</i> , 2020 , 4, 5357-5361	7.8	1
100	Targeting LSCs: Peeling Back the Curtain on the Metabolic Complexities of AML. <i>Cell Stem Cell</i> , 2020 , 27, 693-695	18	2
99	Venetoclax and hypomethylating agent therapy in high risk myelodysplastic syndromes: a retrospective evaluation of a real-world experience. <i>Leukemia and Lymphoma</i> , 2020 , 61, 2700-2707	1.9	10
98	IL-6 blockade reverses bone marrow failure induced by human acute myeloid leukemia. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	22
97	A Dysregulated DNA Methylation Landscape Linked to Gene Expression in MLL-Rearranged AML. <i>Epigenetics</i> , 2020 , 15, 841-858	5.7	7
96	Cytokine Rescue and Targeting of Inflammation-Sensitive RUNX1 Deficient Human CD34+ Hematopoietic Stem and Progenitor Cells. <i>Blood</i> , 2020 , 136, 14-15	2.2	
95	Targeting macrophage checkpoint inhibitor SIRPIfor anticancer therapy. JCI Insight, 2020, 5,	9.9	18
94	Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2. Journal of Clinical Investigation, 2020 , 130, 1843-1849	15.9	17

(2018-2020)

93	The phosphatidylethanolamine biosynthesis pathway provides a new target for cancer chemotherapy. <i>Journal of Hepatology</i> , 2020 , 72, 746-760	13.4	12
92	Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. <i>Nature Cancer</i> , 2020 , 1, 826-839	15.4	38
91	Single-cell mutational profiling enhances the clinical evaluation of AML MRD. <i>Blood Advances</i> , 2020 , 4, 943-952	7.8	28
90	Induced pluripotent stem cell modeling of malignant hematopoiesis. <i>Experimental Hematology</i> , 2019 , 71, 68-76	3.1	4
89	No Matter How You Splice It, RBM39 Inhibition Targets Spliceosome Mutant AML. <i>Cancer Cell</i> , 2019 , 35, 337-339	24.3	2
88	First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. <i>Journal of Clinical Oncology</i> , 2019 , 37, 946-953	2.2	196
87	Data mining for mutation-specific targets in acute myeloid leukemia. <i>Leukemia</i> , 2019 , 33, 826-843	10.7	10
86	Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. <i>ELife</i> , 2019 , 8,	8.9	56
85	Reprogramming Leukemia Cells into Antigen Presenting Cells As a Novel Cancer Vaccination Immunotherapy. <i>Blood</i> , 2019 , 134, 3217-3217	2.2	
84	Enasidenib Drives Maturation of Human Erythroid Precursors Independently of IDH2. <i>Blood</i> , 2019 , 134, 540-540	2.2	
83	Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. <i>Frontiers in Oncology</i> , 2019 , 9, 1380	5.3	87
82	Sufficiency for inducible Caspase-9 safety switch in human pluripotent stem cells and disease cells. <i>Gene Therapy</i> , 2019 , 27, 525-534	4	3
81	Mebendazole for Differentiation Therapy of Acute Myeloid Leukemia Identified by a Lineage Maturation Index. <i>Scientific Reports</i> , 2019 , 9, 16775	4.9	5
80	Use of polyvinyl alcohol for chimeric antigen receptor T-cell expansion. <i>Experimental Hematology</i> , 2019 , 80, 16-20	3.1	5
79	Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. <i>Nature Biotechnology</i> , 2019 , 37, 1458-1465	44.5	128
78	Targeting Cancer Stemness in the Clinic: From Hype to Hope. Cell Stem Cell, 2019, 24, 25-40	18	223
77	Macrophage de novo NAD synthesis specifies immune function in aging and inflammation. <i>Nature Immunology</i> , 2019 , 20, 50-63	19.1	160
76	Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. <i>Cell</i> , 2018 , 173, 1535-1548.e16	56.2	292

75	A first-in-class, first-in-human phase 1 pharmacokinetic (PK) and pharmacodynamic (PD) study of Hu5F9-G4, an anti-CD47 monoclonal antibody (mAb), in patients with advanced solid tumors <i>Journal of Clinical Oncology</i> , 2018 , 36, 3002-3002	2.2	11
74	Single-Cell Mutational Profiling of Clonal Evolution in De Novo AML during Therapy and Relapse. <i>Blood</i> , 2018 , 132, 1469-1469	2.2	
73	IDH1 Mutant AML Is Susceptible to Targeting De Novo Lipid Synthesis Independent of 2-Hydroxyglutarate and Has a Distinct Metabolic Profile from IDH2 Mutant AML. <i>Blood</i> , 2018 , 132, 440)-4 4 7 0	
72	Accumulation of JAK Activation-Loop Phosphorylation Promotes Type I JAK Inhibitor Withdrawal Syndrome in Myelofibrosis. <i>Blood</i> , 2018 , 132, 1787-1787	2.2	
71	Human Acute Myeloid Leukemia Inhibits Normal Erythroid Differentiation through the Paracrine Effects of IL-6. <i>Blood</i> , 2018 , 132, 911-911	2.2	
70	Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. <i>Nature Immunology</i> , 2018 , 19, 85-97	19.1	116
69	Accumulation of JAK activation loop phosphorylation is linked to type I JAK inhibitor withdrawal syndrome in myelofibrosis. <i>Science Advances</i> , 2018 , 4, eaat3834	14.3	23
68	CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkinß Lymphoma. <i>New England Journal of Medicine</i> , 2018 , 379, 1711-1721	59.2	456
67	Identification of the Human Skeletal Stem Cell. Cell, 2018, 175, 43-56.e21	56.2	257
66	Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. <i>Cell Stem Cell</i> , 2017 , 20, 329-344.e7	18	69
65	Biology and relevance of human acute myeloid leukemia stem cells. <i>Blood</i> , 2017 , 129, 1577-1585	2.2	202
64	Optimizing Next-Generation AML Therapy: Activity of Mutant IDH2 Inhibitor AG-221 in Preclinical Models. <i>Cancer Discovery</i> , 2017 , 7, 459-461	24.4	9
63	Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. <i>Nature Communications</i> , 2017 , 8, 15580	17.4	36
62	Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. <i>ELife</i> , 2017 , 6,	8.9	60
61	Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. <i>Nature Protocols</i> , 2017 , 12, 2169-2188	18.8	45
60	Superenhancer Analysis Defines Novel Epigenomic Subtypes of Non-APL AML, Including an RAR Dependency Targetable by SY-1425, a Potent and Selective RAR Agonist. <i>Cancer Discovery</i> , 2017 , 7, 1136-1153	24.4	72
59	Proposed Terminology and Classification of Pre-Malignant Neoplastic Conditions: A Consensus Proposal. <i>EBioMedicine</i> , 2017 , 26, 17-24	8.8	17
58	The role of mutations in the cohesin complex in acute myeloid leukemia. <i>International Journal of Hematology</i> , 2017 , 105, 31-36	2.3	16

(2015-2017)

57	Preleukemic Hematopoietic Stem Cells in Human Acute Myeloid Leukemia. <i>Frontiers in Oncology</i> , 2017 , 7, 263	5.3	27
56	Author response: Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6 2017 ,		2
55	Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. <i>Nature Genetics</i> , 2016 , 48, 1193-203	36.3	555
54	Sticking It to the Niche: CD98 Mediates Critical Adhesive Signals in AML. <i>Cancer Cell</i> , 2016 , 30, 662-664	24.3	5
53	CRISPR/Cas9 Eglobin gene targeting in human haematopoietic stem cells. <i>Nature</i> , 2016 , 539, 384-389	50.4	503
52	CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. <i>Journal of Clinical Investigation</i> , 2016 , 126, 2610-20	15.9	220
51	Alkylator-Induced and Patient-Derived Xenograft Mouse Models of Therapy-Related Myeloid Neoplasms Model Clinical Disease and Suggest the Presence of Multiple Cell Subpopulations with Leukemia Stem Cell Activity. <i>PLoS ONE</i> , 2016 , 11, e0159189	3.7	2
50	Burning Fat Fuels Leukemic Stem Cell Heterogeneity. Cell Stem Cell, 2016, 19, 1-2	18	29
49	A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. <i>Nature Medicine</i> , 2016 , 22, 812-21	50.5	148
48	ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia. <i>Cancer Discovery</i> , 2016 , 6, 770-83	24.4	80
47	SIRPEAntibody Fusion Proteins Selectively Bind and Eliminate Dual Antigen-Expressing Tumor Cells. <i>Clinical Cancer Research</i> , 2016 , 22, 5109-5119	12.9	31
46	Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. <i>Nature Medicine</i> , 2015 , 21, 178-84	50.5	341
45	Reply to Filler et al.: Myeloid reprogramming of Ph+ B-ALL: A potential therapeutic strategy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E3456	11.5	1
44	Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. <i>Blood</i> , 2015 , 125, 249-60	2.2	167
43	Biology and Clinical Relevance of Acute Myeloid Leukemia Stem Cells. <i>Seminars in Hematology</i> , 2015 , 52, 150-64	4	46
42	Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 4074-9	11.5	40
41	Leukemia-Associated Cohesin Mutants Dominantly Enforce Stem Cell Programs and Impair Human Hematopoietic Progenitor Differentiation. <i>Cell Stem Cell</i> , 2015 , 17, 675-688	18	127
40	Mutant WT1 is associated with DNA hypermethylation of PRC2 targets in AML and responds to EZH2 inhibition. <i>Blood</i> , 2015 , 125, 316-26	2.2	35

39	An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. <i>Nature Communications</i> , 2015 , 6, 8489	17.4	79
38	Clonal evolution of preleukemic hematopoietic stem cells in acute myeloid leukemia. <i>Experimental Hematology</i> , 2015 , 43, 989-92	3.1	21
37	A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. <i>MAbs</i> , 2015 , 7, 946-56	6.6	79
36	Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. <i>PLoS ONE</i> , 2015 , 10, e0137345	3.7	257
35	Tuning cytokine receptor signaling by re-orienting dimer geometry with surrogate ligands. <i>Cell</i> , 2015 , 160, 1196-208	56.2	102
34	Transient expression of Bcl6 is sufficient for oncogenic function and induction of mature B-cell lymphoma. <i>Nature Communications</i> , 2014 , 5, 3904	17.4	64
33	Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2548-53	11.5	509
32	Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia. <i>Best Practice and Research in Clinical Haematology</i> , 2014 , 27, 229-34	4.2	14
31	Interaction of TIF-90 and filamin A in the regulation of rRNA synthesis in leukemic cells. <i>Blood</i> , 2014 , 124, 579-89	2.2	12
30	Centrosome-kinase fusions promote oncogenic signaling and disrupt centrosome function in myeloproliferative neoplasms. <i>PLoS ONE</i> , 2014 , 9, e92641	3.7	5
29	Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. <i>International Journal of Hematology</i> , 2013 , 98, 648-57	2.3	85
28	The CD47-SIRP[pathway in cancer immune evasion and potential therapeutic implications. <i>Current Opinion in Immunology</i> , 2012 , 24, 225-32	7.8	362
27	Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. <i>Science Translational Medicine</i> , 2012 , 4, 149ra118	17.5	517
26	The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 666	2 .7 1.5	886
25	Response: mechanisms of targeting CD47-SIRPlin hematologic malignancies. <i>Blood</i> , 2012 , 119, 4334-43	35 .2	7
24	Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 6656-61	11.5	183
23	Programmed cell removal: a new obstacle in the road to developing cancer. <i>Nature Reviews Cancer</i> , 2011 , 12, 58-67	31.3	170
22	Single-cell phospho-specific flow cytometric analysis demonstrates biochemical and functional heterogeneity in human hematopoietic stem and progenitor compartments. <i>Blood</i> , 2011 , 117, 4226-33	2.2	45

(2009-2011)

21	Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. <i>Blood</i> , 2011 , 118, 4890-901	2.2	126
20	Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. <i>Oncogene</i> , 2011 , 30, 1009-19	9.2	129
19	Human acute myelogenous leukemia stem cells revisited: thereß more than meets the eye. <i>Cancer Cell</i> , 2011 , 19, 9-10	24.3	17
18	Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. <i>Cancer Research</i> , 2011 , 71, 1374-84	10.1	255
17	Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 5009-14	11.5	191
16	Quantitation of Leukemic Stem Cell Populations Predicts Clinical Outcome in Acute Myeloid Leukaemia. <i>Blood</i> , 2011 , 118, 638-638	2.2	1
15	Clonal Evolution of Pre-Leukemic Hematopoietic Stem Cells Precedes Human Acute Myeloid Leukemia. <i>Blood</i> , 2011 , 118, 4-4	2.2	
14	Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. <i>JAMA - Journal of the American Medical Association</i> , 2010 , 304, 2706-15	27.4	254
13	Macrophages as mediators of tumor immunosurveillance. <i>Trends in Immunology</i> , 2010 , 31, 212-9	14.4	168
12	Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. <i>Cell</i> , 2010 , 142, 699-713	56.2	672
11	Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. <i>Science Translational Medicine</i> , 2010 , 2, 63ra94	17.5	436
10	Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 3396-401	11.5	219
9	CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. <i>Cell</i> , 2009 , 138, 286-99	56.2	1011
8	CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. <i>Cell</i> , 2009 , 138, 271-85	56.2	952
7	Early Mortality in Acute Promyelocytic Leukemia May Be Higher Than Previously Reported <i>Blood</i> , 2009 , 114, 1015-1015	2.2	6
6	Therapeutic Antibody Targeting of CD47 Synergizes with Rituximab to Completely Eradicate Human B-Cell Lymphoma Xenografts <i>Blood</i> , 2009 , 114, 2716-2716	2.2	1
5	Is Time of the Essence in Adult Acute Myeloid Leukemia (AML)? Time to Blast Clearance and Time to Induction Therapy Fail to Predict Overall Survival (OS) <i>Blood</i> , 2009 , 114, 1617-1617	2.2	
4	Single Cell Phospho-Flow Analysis of Cytokine Stimulation in Human Hematopoietic Progenitors Reveals That G-CSF Acts Directly On Human Hematopoietic Stem Cells <i>Blood</i> , 2009 , 114, 3617-3617	2.2	

3	In vivo evaluation of human hematopoiesis through xenotransplantation of purified hematopoietic stem cells from umbilical cord blood. <i>Nature Protocols</i> , 2008 , 3, 1932-40	18.8	40
2	CD47 Is An Independent Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. <i>Blood</i> , 2008 , 112, 766-766	2.2	1
1	Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. <i>Cell Stem Cell</i> , 2007 , 1, 635-45	18	395