List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5178680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. Cell, 2009, 138, 286-299.	13.5	1,371
2	CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell, 2009, 138, 271-285.	13.5	1,282
3	The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6662-6667.	3.3	1,255
4	Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature Genetics, 2016, 48, 1193-1203.	9.4	952
5	Anti-CD47 Antibody Synergizes with Rituximab to Promote Phagocytosis and Eradicate Non-Hodgkin Lymphoma. Cell, 2010, 142, 699-713.	13.5	894
6	CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma. New England Journal of Medicine, 2018, 379, 1711-1721.	13.9	796
7	CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 2016, 539, 384-389.	13.7	709
8	Clonal Evolution of Preleukemic Hematopoietic Stem Cells Precedes Human Acute Myeloid Leukemia. Science Translational Medicine, 2012, 4, 149ra118.	5.8	630
9	Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2548-2553.	3.3	628
10	Calreticulin Is the Dominant Pro-Phagocytic Signal on Multiple Human Cancers and Is Counterbalanced by CD47. Science Translational Medicine, 2010, 2, 63ra94.	5.8	591
11	Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell, 2018, 173, 1535-1548.e16.	13.5	545
12	The CD47–SIRPα pathway in cancer immune evasion and potential therapeutic implications. Current Opinion in Immunology, 2012, 24, 225-232.	2.4	507
13	Identification of a Hierarchy of Multipotent Hematopoietic Progenitors in Human Cord Blood. Cell Stem Cell, 2007, 1, 635-645.	5.2	485
14	lsocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nature Medicine, 2015, 21, 178-184.	15.2	459
15	Identification of the Human Skeletal Stem Cell. Cell, 2018, 175, 43-56.e21.	13.5	425
16	First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. Journal of Clinical Oncology, 2019, 37, 946-953.	0.8	377
17	Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS ONE, 2015, 10, e0137345.	1.1	373
18	Targeting Cancer Stemness in the Clinic: From Hype to Hope. Cell Stem Cell, 2019, 24, 25-40.	5.2	362

#	Article	IF	CITATIONS
19	Association of a Leukemic Stem Cell Gene Expression Signature With Clinical Outcomes in Acute Myeloid Leukemia. JAMA - Journal of the American Medical Association, 2010, 304, 2706.	3.8	339
20	CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. Journal of Clinical Investigation, 2016, 126, 2610-2620.	3.9	336
21	Biology and relevance of human acute myeloid leukemia stem cells. Blood, 2017, 129, 1577-1585.	0.6	328
22	Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nature Biotechnology, 2019, 37, 1458-1465.	9.4	321
23	Therapeutic Antibody Targeting of CD47 Eliminates Human Acute Lymphoblastic Leukemia. Cancer Research, 2011, 71, 1374-1384.	0.4	318
24	Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nature Immunology, 2019, 20, 50-63.	7.0	304
25	Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3396-3401.	3.3	253
26	Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5009-5014.	3.3	248
27	Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6656-6661.	3.3	225
28	Macrophages as mediators of tumor immunosurveillance. Trends in Immunology, 2010, 31, 212-219.	2.9	215
29	Programmed cell removal: a new obstacle in the road to developing cancer. Nature Reviews Cancer, 2012, 12, 58-67.	12.8	208
30	Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood, 2015, 125, 249-260.	0.6	201
31	Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nature Immunology, 2018, 19, 85-97.	7.0	193
32	Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Frontiers in Oncology, 2019, 9, 1380.	1.3	187
33	A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nature Medicine, 2016, 22, 812-821.	15.2	181
34	Leukemia-Associated Cohesin Mutants Dominantly Enforce Stem Cell Programs and Impair Human Hematopoietic Progenitor Differentiation. Cell Stem Cell, 2015, 17, 675-688.	5.2	177
35	Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood, 2011, 118, 4890-4901.	0.6	159
36	Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene, 2011, 30, 1009-1019.	2.6	149

#	Article	IF	CITATIONS
37	Tuning Cytokine Receptor Signaling by Re-orienting Dimer Geometry with Surrogate Ligands. Cell, 2015, 160, 1196-1208.	13.5	138
38	ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia. Cancer Discovery, 2016, 6, 770-783.	7.7	122
39	An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nature Communications, 2015, 6, 8489.	5.8	121
40	A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs, 2015, 7, 946-956.	2.6	117
41	Superenhancer Analysis Defines Novel Epigenomic Subtypes of Non-APL AML, Including an RARα Dependency Targetable by SY-1425, a Potent and Selective RARα Agonist. Cancer Discovery, 2017, 7, 1136-1153.	7.7	110
42	Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nature Cancer, 2020, 1, 826-839.	5.7	108
43	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 2022, 28, 333-344.	15.2	105
44	Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. International Journal of Hematology, 2013, 98, 648-657.	0.7	101
45	Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell Stem Cell, 2017, 20, 329-344.e7.	5.2	101
46	Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. ELife, 2017, 6, .	2.8	94
47	Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. ELife, 2019, 8, .	2.8	93
48	Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nature Communications, 2017, 8, 15580.	5.8	77
49	Transient expression of Bcl6 is sufficient for oncogenic function and induction of mature B-cell lymphoma. Nature Communications, 2014, 5, 3904.	5.8	73
50	Single-cell mutational profiling enhances the clinical evaluation of AML MRD. Blood Advances, 2020, 4, 943-952.	2.5	63
51	Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. Nature Protocols, 2017, 12, 2169-2188.	5.5	57
52	Biology and Clinical Relevance of Acute Myeloid Leukemia Stem Cells. Seminars in Hematology, 2015, 52, 150-164.	1.8	55
53	Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4074-4079.	3.3	52
54	IL-6 blockade reverses bone marrow failure induced by human acute myeloid leukemia. Science Translational Medicine, 2020, 12, .	5.8	52

#	Article	IF	CITATIONS
55	Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells. Nature Medicine, 2021, 27, 677-687.	15.2	51
56	Single-cell phospho-specific flow cytometric analysis demonstrates biochemical and functional heterogeneity in human hematopoietic stem and progenitor compartments. Blood, 2011, 117, 4226-4233.	0.6	48
57	In vivo evaluation of human hematopoiesis through xenotransplantation of purified hematopoietic stem cells from umbilical cord blood. Nature Protocols, 2008, 3, 1932-1940.	5.5	45
58	Mutant WT1 is associated with DNA hypermethylation of PRC2 targets in AML and responds to EZH2 inhibition. Blood, 2015, 125, 316-326.	0.6	45
59	Targeting macrophage checkpoint inhibitor SIRPÎ $_{\pm}$ for anticancer therapy. JCI Insight, 2020, 5, .	2.3	40
60	Preleukemic Hematopoietic Stem Cells in Human Acute Myeloid Leukemia. Frontiers in Oncology, 2017, 7, 263.	1.3	39
61	Accumulation of JAK activation loop phosphorylation is linked to type I JAK inhibitor withdrawal syndrome in myelofibrosis. Science Advances, 2018, 4, eaat3834.	4.7	39
62	SIRPα-Antibody Fusion Proteins Selectively Bind and Eliminate Dual Antigen-Expressing Tumor Cells. Clinical Cancer Research, 2016, 22, 5109-5119.	3.2	37
63	NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. Blood Cancer Discovery, 2021, 2, 648-665.	2.6	37
64	Burning Fat Fuels Leukemic Stem Cell Heterogeneity. Cell Stem Cell, 2016, 19, 1-2.	5.2	34
65	The phosphatidylethanolamine biosynthesis pathway provides a new target for cancer chemotherapy. Journal of Hepatology, 2020, 72, 746-760.	1.8	33
66	Clonal Hematopoiesis: From Mechanisms to Clinical Intervention. Cancer Discovery, 2021, 11, 2987-2997.	7.7	30
67	Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia. Nature Communications, 2021, 12, 7244.	5.8	29
68	Clonal evolution of preleukemic hematopoietic stem cells in acute myeloid leukemia. Experimental Hematology, 2015, 43, 989-992.	0.2	25
69	Proposed Terminology and Classification of Pre-Malignant Neoplastic Conditions: A Consensus Proposal. EBioMedicine, 2017, 26, 17-24.	2.7	24
70	Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2. Journal of Clinical Investigation, 2020, 130, 1843-1849.	3.9	24
71	Data mining for mutation-specific targets in acute myeloid leukemia. Leukemia, 2019, 33, 826-843.	3.3	23
72	Monocytic Differentiation and AHR Signaling as Primary Nodes of BET Inhibitor Response in Acute Myeloid Leukemia. Blood Cancer Discovery, 2021, 2, 518-531.	2.6	23

#	Article	IF	CITATIONS
73	The TRACE-Seq method tracks recombination alleles and identifies clonal reconstitution dynamics of gene targeted human hematopoietic stem cells. Nature Communications, 2021, 12, 472.	5.8	23
74	Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nature Cancer, 2022, 3, 976-993.	5.7	23
75	Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia. Best Practice and Research in Clinical Haematology, 2014, 27, 229-234.	0.7	21
76	Venetoclax and hypomethylating agent therapy in high risk myelodysplastic syndromes: a retrospective evaluation of a real-world experience. Leukemia and Lymphoma, 2020, 61, 2700-2707.	0.6	21
77	Human Acute Myelogenous Leukemia Stem Cells Revisited: There's More Than Meets the Eye. Cancer Cell, 2011, 19, 9-10.	7.7	19
78	The role of mutations in the cohesin complex in acute myeloid leukemia. International Journal of Hematology, 2017, 105, 31-36.	0.7	17
79	The Cell Type–Specific 5hmC Landscape and Dynamics of Healthy Human Hematopoiesis and <i>TET2</i> -Mutant Preleukemia. Blood Cancer Discovery, 2022, 3, 346-367.	2.6	16
80	Optimizing Next-Generation AML Therapy: Activity of Mutant IDH2 Inhibitor AG-221 in Preclinical Models. Cancer Discovery, 2017, 7, 459-461.	7.7	14
81	Mebendazole for Differentiation Therapy of Acute Myeloid Leukemia Identified by a Lineage Maturation Index. Scientific Reports, 2019, 9, 16775.	1.6	14
82	Interaction of TIF-90 and filamin A in the regulation of rRNA synthesis in leukemic cells. Blood, 2014, 124, 579-589.	0.6	13
83	Use of polyvinyl alcohol for chimeric antigen receptor T-cell expansion. Experimental Hematology, 2019, 80, 16-20.	0.2	13
84	A first-in-class, first-in-human phase 1 pharmacokinetic (PK) and pharmacodynamic (PD) study of Hu5F9-G4, an anti-CD47 monoclonal antibody (mAb), in patients with advanced solid tumors Journal of Clinical Oncology, 2018, 36, 3002-3002.	0.8	13
85	A Dysregulated DNA Methylation Landscape Linked to Gene Expression in MLL-Rearranged AML. Epigenetics, 2020, 15, 841-858.	1.3	11
86	Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia. Nature Communications, 2022, 13, 2614.	5.8	9
87	Centrosome-Kinase Fusions Promote Oncogenic Signaling and Disrupt Centrosome Function in Myeloproliferative Neoplasms. PLoS ONE, 2014, 9, e92641.	1.1	8
88	CytofIn enables integrated analysis of public mass cytometry datasets using generalized anchors. Nature Communications, 2022, 13, 934.	5.8	8
89	Response: mechanisms of targeting CD47-SIRPα in hematologic malignancies. Blood, 2012, 119, 4334-4335.	0.6	7
90	Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Research, 2022, 82, 2777-2791.	0.4	7

#	Article	IF	CITATIONS
91	Sufficiency for inducible Caspase-9 safety switch in human pluripotent stem cells and disease cells. Gene Therapy, 2020, 27, 525-534.	2.3	6
92	CD34 expression does not correlate with immunophenotypic stem cell or progenitor content in human cord blood products. Blood Advances, 2020, 4, 5357-5361.	2.5	6
93	Early Mortality in Acute Promyelocytic Leukemia May Be Higher Than Previously Reported Blood, 2009, 114, 1015-1015.	0.6	6
94	Sticking It to the Niche: CD98 Mediates Critical Adhesive Signals in AML. Cancer Cell, 2016, 30, 662-664.	7.7	5
95	Induced pluripotent stem cell modeling of malignant hematopoiesis. Experimental Hematology, 2019, 71, 68-76.	0.2	5
96	Quantitation of Leukemic Stem Cell Populations Predicts Clinical Outcome in Acute Myeloid Leukaemia. Blood, 2011, 118, 638-638.	0.6	5
97	Human Acute Myeloid Leukemia Inhibits Normal Erythroid Differentiation through the Paracrine Effects of IL-6. Blood, 2018, 132, 911-911.	0.6	5
98	Targeting LSCs: Peeling Back the Curtain on the Metabolic Complexities of AML. Cell Stem Cell, 2020, 27, 693-695.	5.2	4
99	No Matter How You Splice It, RBM39 Inhibition Targets Spliceosome Mutant AML. Cancer Cell, 2019, 35, 337-339.	7.7	3
100	Impact of magrolimab treatment in combination with azacitidine on red blood cells in patients with higher-risk myelodysplastic syndrome (HR-MDS) Journal of Clinical Oncology, 2022, 40, 7054-7054.	0.8	3
101	Alkylator-Induced and Patient-Derived Xenograft Mouse Models of Therapy-Related Myeloid Neoplasms Model Clinical Disease and Suggest the Presence of Multiple Cell Subpopulations with Leukemia Stem Cell Activity. PLoS ONE, 2016, 11, e0159189.	1.1	2
102	Clonal Evolution of Pre-Leukemic Hematopoietic Stem Cells Precedes Human Acute Myeloid Leukemia. Blood, 2011, 118, 4-4.	0.6	2
103	Reply to Fišer et al.: Myeloid reprogramming of Ph ⁺ B-ALL: A potential therapeutic strategy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3456.	3.3	1
104	CD47 Is An Independent Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. Blood, 2008, 112, 766-766.	0.6	1
105	Therapeutic Antibody Targeting of CD47 Synergizes with Rituximab to Completely Eradicate Human B-Cell Lymphoma Xenografts Blood, 2009, 114, 2716-2716.	0.6	1
106	Is Time of the Essence in Adult Acute Myeloid Leukemia (AML)? Time to Blast Clearance and Time to Induction Therapy Fail to Predict Overall Survival (OS) Blood, 2009, 114, 1617-1617.	0.6	1
107	Single Cell Phospho-Flow Analysis of Cytokine Stimulation in Human Hematopoietic Progenitors Reveals That G-CSF Acts Directly On Human Hematopoietic Stem Cells Blood, 2009, 114, 3617-3617.	0.6	0
108	Pre-Leukemic Hematopoietic Stem Cells in Human Acute Myeloid Leukemia. , 2015, 12, .		0

#	Article	IF	CITATIONS
109	Single-Cell Mutational Profiling of Clonal Evolution in De Novo AML during Therapy and Relapse. Blood, 2018, 132, 1469-1469.	0.6	0
110	IDH1 Mutant AML Is Susceptible to Targeting De Novo Lipid Synthesis Independent of 2-Hydroxyglutarate and Has a Distinct Metabolic Profile from IDH2 Mutant AML. Blood, 2018, 132, 440-440.	0.6	0
111	Accumulation of JAK Activation-Loop Phosphorylation Promotes Type I JAK Inhibitor Withdrawal Syndrome in Myelofibrosis. Blood, 2018, 132, 1787-1787.	0.6	0
112	Reprogramming Leukemia Cells into Antigen Presenting Cells As a Novel Cancer Vaccination Immunotherapy. Blood, 2019, 134, 3217-3217.	0.6	0
113	Enasidenib Drives Maturation of Human Erythroid Precursors Independently of IDH2. Blood, 2019, 134, 540-540.	0.6	0
114	Cytokine Rescue and Targeting of Inflammation-Sensitive RUNX1 Deficient Human CD34+ Hematopoietic Stem and Progenitor Cells. Blood, 2020, 136, 14-15.	0.6	0