
Ã,ngela M Moraes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5178336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of different sterilization methods on the morphology, mechanical properties, and cytotoxicity of chitosan membranes used as wound dressings. Journal of Biomedical Materials Research Part B, 2004, 71B, 268-277.	3.0	124
2	Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. European Polymer Journal, 2017, 88, 161-170.	2.6	109
3	Chitosanâ€alginate membranes accelerate wound healing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1013-1022.	1.6	89
4	Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidation activity. Journal of Supercritical Fluids, 2010, 54, 159-164.	1.6	73
5	Incorporation of Antibiotics in Liposomes Designed for Tuberculosis Therapy by Inhalation. Drug Delivery, 2003, 10, 201-207.	2.5	65
6	Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering. International Journal of Biological Macromolecules, 2020, 143, 619-632.	3.6	61
7	The influence of preparation conditions on the characteristics of chitosanâ€alginate dressings for skin lesions. Journal of Applied Polymer Science, 2008, 109, 2703-2710.	1.3	59
8	Towards wound dressings with improved properties: Effects of poly(dimethylsiloxane) on chitosan-alginate films loaded with thymol and beta-carotene. Materials Science and Engineering C, 2018, 93, 595-605.	3.8	57
9	Development of porous lamellar chitosanâ€elginate membranes: Effect of different surfactants on biomaterial properties. Journal of Applied Polymer Science, 2011, 122, 624-631.	1.3	54
10	Drosophila melanogaster S2 cells for expression of heterologous genes: From gene cloning to bioprocess development. Biotechnology Advances, 2012, 30, 613-628.	6.0	52
11	Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 2016, 141, 499-506.	2.5	52
12	Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication, 2021, 13, 032002.	3.7	52
13	Production and characterisation of alginate microparticles incorporating Aeromonas hydrophila designed for fish oral vaccination. Process Biochemistry, 2006, 41, 638-643.	1.8	47
14	Comparison of the properties of compacted and porous lamellar chitosan–xanthan membranes as dressings and scaffolds for the treatment of skin lesions. Journal of Applied Polymer Science, 2012, 125, E421.	1.3	45
15	Control of the properties of porous chitosan–alginate membranes through the addition of different proportions of Pluronic F68. Materials Science and Engineering C, 2014, 44, 117-125.	3.8	45
16	Oral and parenteral vaccines against Flavobacterium columnare: evaluation of humoral immune response by ELISA and in vivo efficiency in Nile tilapia (Oreochromis niloticus). Aquaculture International, 2010, 18, 657-666.	1.1	43
17	Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. Journal of Biomaterials Applications, 2015, 29, 1155-1166.	1.2	43
18	Coated electrospun bioactive wound dressings: Mechanical properties and ability to control lesion microenvironment. Materials Science and Engineering C, 2019, 100, 493-504.	3.8	43

Ã,NGELA M MORAES

#	Article	IF	CITATIONS
19	Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin. Materials Science and Engineering C, 2017, 80, 594-602.	3.8	41
20	Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues. Materials Science and Engineering C, 2019, 94, 364-375.	3.8	41
21	Analysis of process parameters on the characteristics of liposomes prepared by ethanol injection with a view to process scale-up: Effect of temperature and batch volume. Chemical Engineering Research and Design, 2011, 89, 785-792.	2.7	39
22	Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type. BMC Complementary and Alternative Medicine, 2015, 15, 390.	3.7	38
23	Comparison of the properties of membranes produced with alginate and chitosan from mushroom and from shrimp. International Journal of Biological Macromolecules, 2016, 91, 496-504.	3.6	38
24	Influence of the incorporation of the antimicrobial agent polyhexamethylene biguanide on the properties of dense and porous chitosan-alginate membranes. Materials Science and Engineering C, 2018, 93, 671-678.	3.8	38
25	Kanamycin incorporation in lipid vesicles prepared by ethanol injection designed for tuberculosis treatmentâ€. Journal of Pharmacy and Pharmacology, 2010, 57, 23-30.	1.2	36
26	Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 394-405.	1.6	34
27	Comparative study on complexes formed by chitosan and different polyanions: Potential of chitosan-pectin biomaterials as scaffolds in tissue engineering. International Journal of Biological Macromolecules, 2019, 132, 178-189.	3.6	32
28	Study of the swelling and stability properties of chitosan–xanthan membranes. Journal of Applied Polymer Science, 2012, 124, E154.	1.3	25
29	Improvement of the mechanical properties of chitosanâ€alginate wound dressings containing silver through the addition of a biocompatible silicone rubber. Journal of Applied Polymer Science, 2015, 132,	1.3	25
30	Properties of PLA/PCL particles as vehicles for oral delivery of the androgen hormone 171±-methyltestosterone. Materials Science and Engineering C, 2016, 58, 870-881.	3.8	25
31	Use of chitosan membrane associated with polypropylene mesh to prevent peritoneal adhesion in rats. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 221-227.	1.6	22
32	Characterization of chitosan and polycaprolactone membranes designed for wound repair application. Journal of Materials Science, 2012, 47, 659-667.	1.7	22
33	Preparation and characterization of liposomal systems entrapping the boronated compound o-carboranylpropylamine. Journal of Microencapsulation, 1999, 16, 647-664.	1.2	21
34	BIOMATERIALS: TYPES, APPLICATIONS, AND MARKET. Quimica Nova, 2015, , .	0.3	21
35	Effects of supercritical carbon dioxide processing on the properties of chitosan–alginate membranes. Journal of Supercritical Fluids, 2016, 112, 128-135.	1.6	20
36	Antibacterial and non-cytotoxic ultra-thin polyethylenimine film. Materials Science and Engineering C, 2017, 71, 718-724.	3.8	20

Ã, NGELA M MORAES

#	Article	IF	CITATIONS
37	Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. European Polymer Journal, 2020, 129, 109637.	2.6	20
38	Composite membranes of alginate and chitosan reinforced with cotton or linen fibers incorporating epidermal growth factor. Materials Science and Engineering C, 2017, 76, 287-294.	3.8	19
39	Enhancement of Sf9 Cells and Baculovirus Production Employing Grace's Medium Supplemented with Milk Whey Ultrafiltrate. Cytotechnology, 2005, 49, 1-9.	0.7	18
40	Economical Feasibility Evaluation of an Ethanol Injection Liposome Production Plant. Chemical Engineering and Technology, 2010, 33, 15-20.	0.9	18
41	Tuning the properties of alginate—chitosan membranes by varying the viscosity and the proportions of polymers. Journal of Applied Polymer Science, 2016, 133, .	1.3	18
42	Properties of films obtained from biopolymers of different origins for skin lesions therapy. Brazilian Archives of Biology and Technology, 2015, 58, 289-299.	0.5	17
43	Growth of recombinant Drosophila melanogaster Schneider 2 cells producing rabies virus glycoprotein in bioreactor employing serum-free medium. Cytotechnology, 2008, 57, 73-81.	0.7	16
44	Influence of culture conditions on recombinant Drosophila melanogaster S2 cells producing rabies virus glycoprotein cultivated in serum-free medium. Biologicals, 2009, 37, 108-118.	0.5	16
45	Kinetic response of a Drosophila melanogaster cell line to different medium formulations and culture conditions. Cytotechnology, 2008, 57, 23-35.	0.7	15
46	Waterborne microorganisms and biofilms related to hospital infections: strategies for prevention and control in healthcare facilities. Journal of Water and Health, 2016, 14, 52-67.	1.1	15
47	Analysis of the performance of polysaccharide membranes in aqueous media as a tool to assist woundâ€dressing selection. Journal of Applied Polymer Science, 2017, 134, 45386.	1.3	15
48	Culture of transgenicDrosophila melanogaster Schneider 2 cells in serum-free media based on TC100 basal medium. Biotechnology Journal, 2007, 2, 1399-1407.	1.8	14
49	Formulation of a protein-free medium based on IPL-41 for the sustained growth of Drosophila melanogaster S2 cells. Cytotechnology, 2008, 57, 11-22.	0.7	14
50	Avaliação do potencial antioxidante de extratos ativos de plantas obtidos por extração com fluido supercrÃtico. Quimica Nova, 2008, 31, 1699-1705.	0.3	14
51	Formation of PLA particles incorporating 17α-methyltestosterone by supercritical fluid technology. Journal of Supercritical Fluids, 2013, 77, 52-62.	1.6	14
52	Polysaccharideâ€based membranes loaded with erythromycin for application as wound dressings. Journal of Applied Polymer Science, 2016, 133, .	1.3	14
53	Nomenclature and guideline to express the amount of a membrane protein synthesized in animal cells in view of bioprocess optimization and production monitoring. Biologicals, 2010, 38, 105-112.	0.5	13
54	INCORPORATION AND RELEASE KINETICS OF ALPHA-BISABOLOL FROM PCL AND CHITOSAN/GUAR GUM MEMBRANES. Brazilian Journal of Chemical Engineering, 2016, 33, 453-467.	0.7	13

Ã,NGELA M MORAES

#	Article	IF	CITATIONS
55	Chondrogenesis of human amniotic fluid stem cells in Chitosan-Xanthan scaffold for cartilage tissue engineering. Scientific Reports, 2021, 11, 3063.	1.6	13
56	Development of bioadhesive polysaccharide-based films for topical release of the immunomodulatory agent imiquimod on oral mucosa lesions. European Polymer Journal, 2021, 151, 110422.	2.6	13
57	Dispersion and release of embelin from electrospun, biodegradable, polymeric membranes. Polymer Journal, 2012, 44, 1105-1111.	1.3	12
58	Polysaccharide-based tissue-engineered vascular patches. Materials Science and Engineering C, 2019, 104, 109973.	3.8	12
59	Analysis of cellular morphology, adhesion, and proliferation on uncoated and differently coated PVC tubes used in extracorporeal circulation (ECC). Journal of Biomedical Materials Research Part B, 2004, 69B, 38-45.	3.0	11
60	Influence of a triazine derivative-based biocide on microbial biofilms of cutting fluids in contact with different substrates. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 743-748.	1.4	11
61	Biopolymer-based films and membranes as wound dressings. , 2020, , 165-194.		11
62	Flexible, dense and porous chitosan and alginate membranes containing the standardized extract of Arrabidaea chica Verlot for the treatment of skin lesions. Materials Science and Engineering C, 2020, 112, 110869.	3.8	11
63	Enhancement of cellular activity in hyperglycemic mice dermal wounds dressed with chitosan-alginate membranes. Brazilian Journal of Medical and Biological Research, 2020, 53, e8621.	0.7	11
64	Development of polysaccharide-based membranes incorporating the bioactive compound aloin. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 193-202.	1.8	10
65	Effects of Electrospun Fibrous Membranes of PolyCaprolactone and Chitosan/Poly(Ethylene Oxide) on Mouse Acute Skin Lesions. Polymers, 2020, 12, 1580.	2.0	10
66	Cost Function Analysis Applied to Different Kinetic Release Models of Arrabidaea chica Verlot Extract from Chitosan/Alginate Membranes. Polymers, 2022, 14, 1109.	2.0	10
67	A simple and effective approach to produce tubular polysaccharideâ€based hydrogel scaffolds. Journal of Applied Polymer Science, 2020, 137, 48510.	1.3	9
68	Influence of the chemical composition and structure design of electrospun matrices on the release kinetics of Aloe vera extract rich in aloin. Polymer Degradation and Stability, 2020, 179, 109233.	2.7	9
69	Development of a device useful to reproducibly produce large quantities of viable and uniform stem cell spheroids with controlled diameters. Materials Science and Engineering C, 2022, 135, 112685.	3.8	8
70	Cashew tree gum for biomaterials engineering: A versatile raw material in consolidation. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
71	Behavior of Wild-type and Transfected S2 Cells Cultured in Two Different Media. Applied Biochemistry and Biotechnology, 2011, 163, 1-13.	1.4	6
72	Physicochemical properties and release behavior of indomethacin-loaded polysaccharide membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 956-964.	1.8	6

Ã, NGELA M MORAES

#	Article	IF	CITATIONS
73	Calcium phosphates Chitosan-Xanthan composite scaffolds associated with mesenchymal stem cells for regenerative dentistry application. Ceramics International, 2022, 48, 23088-23095.	2.3	6
74	Crosslinked alginateâ€xanthan gum blends as effective hydrogels for <scp>3D</scp> bioprinting of biological tissues. Journal of Applied Polymer Science, 2022, 139, .	1.3	6
75	Characterization of coatings for open-heart surgery tubing with heparin and lipid. Journal of Materials Science: Materials in Medicine, 1998, 9, 793-796.	1.7	5
76	Biostimulation of venous chronic ulcers with platelet-rich plasma gel and biocompatible membranes of chitosan and alginate: A pilot study. Wound Medicine, 2019, 26, 100161.	2.7	4
77	Chitosan film for treatment of cutaneous wound in a female cat. Acta Scientiae Veterinariae, 2018, 35, 381.	0.2	4
78	Terapia celular combinada com membranas de biopolÃmeros melhora a cicatrização de úlceras em paciente com dermatomiosite juvenil. Surgical and Cosmetic Dermatology, 2018, 10, 28-35.	0.0	4
79	Advances in the Use of Supercritical Fluids for the Production of Poly(α-hydroxyester) Particles Incorporating Bioactive Agents. Journal of Biomaterials and Tissue Engineering, 2013, 3, 89-107.	0.0	3
80	Hybrid bilayered chitosan-xanthan/PCL scaffolds as artificial periosteum substitutes for bone tissue regeneration. Journal of Materials Science, 2022, 57, 2924-2940.	1.7	3
81	Characterization of Liposomal Systems Entrapping Boron-Containing Compounds in Response to pH Gradients. , 1996, , 259-275.		2
82	Evaluation of Cell Growth Characteristics on Chitosan-Alginate Membranes to Assess Their Potential Application on Highly Exuding Skin Lesions and In Vivo Evaluation in Wounded Cat. , 2010, , 789-794.		2
83	Evaluation of concentrated milk whey as a supplement for SF9 Spodoptera frugiperda cells in culture. Electronic Journal of Biotechnology, 2006, 9, 0-0.	1.2	2
84	The effect of medium composition on interleukin-2 production by murine EL-4 thymoma cells. Brazilian Journal of Chemical Engineering, 2004, 21, 165-173.	0.7	2
85	Static systems to obtain 3D spheroid cell models: a cost analysis comparing the implementation of four types of microwell array inserts. Biochemical Engineering Journal, 2022, 182, 108414.	1.8	2
86	Use of chitosan and polypropylene for the surgical correction of penile deviation in bulls: clinical and histological aspects. Archivos De Medicina Veterinaria, 2012, 44, 303-310.	0.2	1
87	Encapsulamento do 5-fluorouracil em lipossomas para administração tópica. Acta Scientiarum - Technology, 2003, 25, 53.	0.4	0
88	Produção de micropartÃculas de alginato contendo Flavobacterium columnare inativada pelo método de emulsão para vacinação de peixes por via oral. Quimica Nova, 2010, 33, 263-268.	0.3	0
89	Condrogenesis of mesenchymal stem cells derived from human amniotic fluid in chitosan-xanthan scaffolds under TGF- beta 3 stimuli. Osteoarthritis and Cartilage, 2019, 27, S433-S434.	0.6	0

90 Xanthan Gum for Regenerative Medicine. , 2021, , 1-29.

Ã,NGELA M MORAES

#	Article	IF	CITATIONS
91	Preparation and Characterization of Inclusion Complexes of Cyclodextrins and Tuberculosis Primary Treatment Drugs. , 1999, , 463-466.		0
92	1 DESENVOLVIMENTO DE DISPOSITIVO DE QUITOSANA E XANTANA PARA A LIBERAÇÃO TÓPICA OU EM TECIDOS MOLES DE INDOMETACINA. , 0, , .		0
93	INCORPORAÇÃ $_{ m f}$ O DE EXTRATO DE ALECRIM EM MEMBRANAS DE ALGINATO E QUITOSANA. , 0, , .		0
94	Desenvolvimento e análise das caracterÃsticas de hidrogéis de polissacarÃdeos para engenharia tecidual de cartilagem. , 0, , .		0
95	Polypropylene meshes coated with chitosan/polyethylene glycol for the reconstruction of the abdominal wall: an experimental study in rats. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2019, 71, 1198-1206.	0.1	0
96	Xanthan Gum for Regenerative Medicine. , 2022, , 1133-1160.		0
97	Aplicação de polissacarÃdeos para a produção de curativos e outros biomateriais. , 0, , 67-110.		Ο