David W Haas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5178265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Clinical Prediction Model for Unsuccessful Pulmonary Tuberculosis Treatment Outcomes. Clinical Infectious Diseases, 2022, 74, 973-982.	5.8	9
2	Pharmacogenetics of interaction between depot medroxyprogesterone acetate and efavirenz, rifampicin, and isoniazid during treatment of HIV and tuberculosis. Pharmacogenetics and Genomics, 2022, 32, 24-30.	1.5	3
3	Pharmacogenetics of Between-Individual Variability in Plasma Clearance of Bedaquiline and Clofazimine in South Africa. Journal of Infectious Diseases, 2022, 226, 147-156.	4.0	8
4	Pharmacogenetics of Dolutegravir Plasma Exposure Among Southern Africans With Human Immunodeficiency Virus. Journal of Infectious Diseases, 2022, 226, 1616-1625.	4.0	3
5	Efavirenz Pharmacogenetics and Weight Gain Following Switch to Integrase Inhibitor–Containing Regimens. Clinical Infectious Diseases, 2021, 73, e2153-e2163.	5.8	32
6	IFNL4 Genotype Does Not Associate with CD4 T-Cell Recovery in People Living with Human Immunodeficiency Virus. AIDS Research and Human Retroviruses, 2021, 37, 184-188.	1.1	2
7	Implications of Efavirenz Pharmacogenetics When Switching From Efavirenz- to Dolutegravir-containing Antiretroviral Regimens. Clinical Infectious Diseases, 2021, 72, 1820-1822.	5.8	4
8	Pharmacokinetics and Drugâ€Drug Interactions of Isoniazid and Efavirenz in Pregnant Women Living With HIV in High TB Incidence Settings: Importance of Genotyping. Clinical Pharmacology and Therapeutics, 2021, 109, 1034-1044.	4.7	20
9	Genetic Associations with Weight Gain among South Africans who Initiated Dolutegravir- and Tenofovir-containing Regimens. Journal of Acquired Immune Deficiency Syndromes (1999), 2021, Publish Ahead of Print, 1002-1009.	2.1	6
10	Pharmacogenetics of tenofovir and emtricitabine penetration into cerebrospinal fluid. Southern African Journal of HIV Medicine, 2021, 22, 1206.	0.9	2
11	Tissue specificity-aware TWAS (TSA-TWAS) framework identifies novel associations with metabolic, immunologic, and virologic traits in HIV-positive adults. PLoS Genetics, 2021, 17, e1009464.	3.5	11
12	Transdisciplinary Perspectives on Precision Medicine. Health Equity, 2021, 5, 288-298.	1.9	1
13	Pharmacogenetic interactions of rifapentine plus isoniazid with efavirenz or nevirapine. Pharmacogenetics and Genomics, 2021, 31, 17-27.	1.5	10
14	Mitochondrial DNA haplogroups and weight gain following switch to integrase strand transfer inhibitor-based antiretroviral therapy. Aids, 2021, 35, 439-445.	2.2	11
15	A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nature Genetics, 2021, 53, 1504-1516.	21.4	69
16	Mitochondrial DNA Haplogroups and Frailty in Adults Living with HIV. AIDS Research and Human Retroviruses, 2020, 36, 214-219.	1.1	6
17	Effects of Pregnancy and Isoniazid Preventive Therapy on Mycobacterium tuberculosis Interferon Gamma Response Assays in Women With HIV. Clinical Infectious Diseases, 2020, 73, e3555-e3562.	5.8	9
18	HLA tapasin independence: broader peptide repertoire and HIV control. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28232-28238.	7.1	51

DAVID W HAAS

#	Article	IF	CITATIONS
19	Endogenous Retroviral Envelope Syncytin Induces HIV-1 Spreading and Establishes HIV Reservoirs in Placenta. Cell Reports, 2020, 30, 4528-4539.e4.	6.4	25
20	Pharmacogenetic interactions between antiretroviral drugs and vaginally administered hormonal contraceptives. Pharmacogenetics and Genomics, 2020, 30, 45-53.	1.5	9
21	CCR5AS IncRNA variation differentially regulates CCR5, influencing HIV disease outcome. Nature Immunology, 2019, 20, 824-834.	14.5	87
22	GCH1 haplotypes and cardiovascular risk in HIV. Aids, 2019, 33, 1669-1671.	2.2	1
23	Antiretroviral Concentrations in Hair Strongly Predict Virologic Response in a Large Human Immunodeficiency Virus Treatment-naive Clinical Trial. Clinical Infectious Diseases, 2019, 68, 1044-1047.	5.8	22
24	Pharmacogenetics and pharmacokinetics of CNS penetration of efavirenz and its metabolites. Journal of Antimicrobial Chemotherapy, 2019, 74, 699-709.	3.0	13
25	ACTG A5353: A Pilot Study of Dolutegravir Plus Lamivudine for Initial Treatment of Human Immunodeficiency Virus-1 (HIV-1)–infected Participants With HIV-1 RNA <500000 Copies/mL. Clinical Infectious Diseases, 2018, 66, 1689-1697.	5.8	83
26	Elevated <i>HLA-A</i> expression impairs HIV control through inhibition of NKG2A-expressing cells. Science, 2018, 359, 86-90.	12.6	135
27	Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives. Lancet Infectious Diseases, The, 2018, 18, e64-e75.	9.1	119
28	Precision HIV care: responding to old questions and meeting new challenges. Pharmacogenomics, 2018, 19, 1299-1302.	1.3	1
29	Brain neurotransmitter transporter/receptor genomics and efavirenz central nervous system adverse events. Pharmacogenetics and Genomics, 2018, 28, 179-187.	1.5	4
30	Hemochromatosis (<i>HFE</i>) Gene Variants Are Associated with Increased Mitochondrial DNA Levels During HIV-1 Infection and Antiretroviral Therapy. AIDS Research and Human Retroviruses, 2018, 34, 942-949.	1.1	4
31	Drug metabolism and transport gene polymorphisms and efavirenz adverse effects in Brazilian HIV-positive individuals. Journal of Antimicrobial Chemotherapy, 2018, 73, 2460-2467.	3.0	17
32	Killer cell immunoglobulin–like receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1. Journal of Clinical Investigation, 2018, 128, 1903-1912.	8.2	52
33	Genetics of Nevirapine Metabolic Pathways at Steady State in HIV-Infected Cambodians. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	3
34	Evaluating the Impact of Functional Genetic Variation on HIV-1 Control. Journal of Infectious Diseases, 2017, 216, 1063-1069.	4.0	20
35	HLA-B*14:02-Restricted Env-Specific CD8 + T-Cell Activity Has Highly Potent Antiviral Efficacy Associated with Immune Control of HIV Infection. Journal of Virology, 2017, 91, .	3.4	14
36	Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles. Scientific Reports, 2017, 7, 8653.	3.3	41

DAVID W HAAS

#	Article	IF	CITATIONS
37	Race/Ethnicity and the Pharmacogenetics of Reported Suicidality With Efavirenz Among Clinical Trials Participants. Journal of Infectious Diseases, 2017, 216, 554-564.	4.0	23
38	Weight Gain After Switch from Efavirenz-Based to Integrase Inhibitor-Based Regimens. Open Forum Infectious Diseases, 2017, 4, S433-S433.	0.9	1
39	Patient willingness to undergo efavirenz dose reduction based on pharmacogenetic testing. Personalized Medicine, 2016, 13, 241-247.	1.5	0
40	Pharmacogenetics of unboosted atazanavir in HIV-infected individuals in resource-limited settings: a sub-study of the AIDS Clinical Trials Group (ACTG) PEARLS study (NWCS 342). Journal of Antimicrobial Chemotherapy, 2016, 71, 1609-1618.	3.0	11
41	Pharmacogenetics of plasma efavirenz exposure in HIVâ€infected adults and children in South Africa. British Journal of Clinical Pharmacology, 2015, 80, 146-156.	2.4	64
42	Genomewide association study of tenofovir pharmacokinetics and creatinine clearance in AIDS Clinical Trials Group protocol A5202. Pharmacogenetics and Genomics, 2015, 25, 450-461.	1.5	15
43	Combined Effect of CYP2B6 and NAT2 Genotype on Plasma Efavirenz Exposure During Rifampin-based Antituberculosis Therapy in the STRIDE Study. Clinical Infectious Diseases, 2015, 60, 1860-1863.	5.8	28
44	Screening for UGT1A1 Genotype in Study A5257 Would Have Markedly Reduced Premature Discontinuation of Atazanavir for Hyperbilirubinemia. Open Forum Infectious Diseases, 2015, 2, ofv085.	0.9	19
45	Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14658-14663.	7.1	154
46	Phenome-wide Association Study Relating Pretreatment Laboratory Parameters With Human Genetic Variants in AIDS Clinical Trials Group Protocols. Open Forum Infectious Diseases, 2015, 2, ofu113.	0.9	37
47	Novel Dosing Strategies Increase Exposures of the Potent Antituberculosis Drug Rifapentine but Are Poorly Tolerated in Healthy Volunteers. Antimicrobial Agents and Chemotherapy, 2015, 59, 3399-3405.	3.2	11
48	Cost–effectiveness of <i>CYP2B6</i> genotyping to optimize efavirenz dosing in HIV clinical practice. Pharmacogenomics, 2015, 16, 2007-2018.	1.3	19
49	Phase I Safety, Pharmacokinetics, and Pharmacogenetics Study of the Antituberculosis Drug PA-824 with Concomitant Lopinavir-Ritonavir, Efavirenz, or Rifampin. Antimicrobial Agents and Chemotherapy, 2014, 58, 5245-5252.	3.2	42
50	Functional CYP2B6 variants and virologic response to an efavirenz-containing regimen in Port-au-Prince, Haiti. Journal of Antimicrobial Chemotherapy, 2014, 69, 2187-2190.	3.0	18
51	Secondary metabolism pathway polymorphisms and plasma efavirenz concentrations in HIV-infected adults with CYP2B6 slow metabolizer genotypes. Journal of Antimicrobial Chemotherapy, 2014, 69, 2175-2182.	3.0	49
52	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	21.4	1,818
53	Genetic and Non-Genetic Determinants of Raltegravir Penetration into Cerebrospinal Fluid: A Single Arm Pharmacokinetic Study. PLoS ONE, 2013, 8, e82672.	2.5	10
54	Clinical perspectives on human genetic screening to prevent nevirapine toxicity. Personalized Medicine, 2012, 9, 773-782.	1.5	4

DAVID W HAAS

#	Article	IF	CITATIONS
55	The Major Genetic Determinants of HIV-1 Control Affect HLA Class I Peptide Presentation. Science, 2010, 330, 1551-1557.	12.6	1,054
56	Hepatotoxicity and Gastrointestinal Intolerance When Healthy Volunteers Taking Rifampin Add Twice-Daily Atazanavir and Ritonavir. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 50, 290-293.	2.1	87
57	A Randomized Study of Antiviral Medication Switch at Lower-Versus Higher-Switch Thresholds: AIDS Clinical Trials Group Study A5115. Antiviral Therapy, 2007, 12, 531-541.	1.0	18
58	Can Responses to Antiretroviral Therapy Be Improved by Therapeutic Drug Monitoring?. Clinical Infectious Diseases, 2006, 42, 1197-1199.	5.8	6
59	Pharmacogenetics of Nevirapine-Associated Hepatotoxicity: An Adult AIDS Clinical Trials Group Collaboration. Clinical Infectious Diseases, 2006, 43, 783-786.	5.8	131
60	Pharmacogenetics of Longâ€Term Responses to Antiretroviral Regimens Containing Efavirenz and/or Nelfinavir: An Adult AIDS Clinical Trials Group Study. Journal of Infectious Diseases, 2005, 192, 1931-1942.	4.0	232
61	Pharmacogenomics of antiretroviral therapy. Drug Development Research, 2004, 62, 213-220.	2.9	4
62	Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. Aids, 2004, 18, 2391-400.	2.2	429
63	Effects of Ritonavir on Indinavir Pharmacokinetics in Cerebrospinal Fluid and Plasma. Antimicrobial Agents and Chemotherapy, 2003, 47, 2131-2137.	3.2	43
64	MDR1 Gene Polymorphisms and Phase 1 Viral Decay During HIV-1 Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2003, 34, 295-298.	2.1	54
65	Therapy with atazanavir plus saquinavir in patients failing highly active antiretroviral therapy: a randomized comparative pilot trial. Aids, 2003, 17, 1339-1349.	2.2	81
66	A Multi-Investigator/Institutional DNA Bank for AIDS-Related Human Genetic Studies: AACTG Protocol A5128. HIV Clinical Trials, 2003, 4, 287-300.	2.0	66
67	Steady-state pharmacokinetics of indinavir in cerebrospinal fluid and plasma among adults with human immunodeficiency virus type 1 infection. Clinical Pharmacology and Therapeutics, 2000, 68, 367-374.	4.7	41
68	Factors That Predict Incomplete Virological Response to Protease Inhibitorâ€Based Antiretroviral Therapy. Clinical Infectious Diseases, 1999, 29, 75-81.	5.8	36
69	No influence of large volume blood loss on serum vancomycin concentrations during orthopedic procedures. Acta Orthopaedica, 1999, 70, 47-50.	1.4	7
70	Tuberculous Pericarditis in an HIV-Infected Patient. Scandinavian Journal of Infectious Diseases, 1995, 27, 411-413.	1.5	5
71	Marked Polymorphonuclear Pleocytosis Due to Blastomycotic Meningitis: Case Report and Review. Clinical Infectious Diseases, 1994, 18, 816-818.	5.8	24

Antimicrobial Prophylaxis of Infections Associated with Foreign Bodies. , 0, , 395-406.

7