
Anna K Blakney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5178168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current Status and Future Perspectives on MRNA Drug Manufacturing. Molecular Pharmaceutics, 2022, 19, 1047-1058.	2.3	44
2	Presentation of antigen on extracellular vesicles using transmembrane domains from viral glycoproteins for enhanced immunogenicity. Journal of Extracellular Vesicles, 2022, 11, e12199.	5.5	14
3	Voices in Molecular Pharmaceutics: Meet Dr. Anna Blakney, an Engineer Who Seeks To Develop the Next Generation of Gene Therapies. Molecular Pharmaceutics, 2022, 19, 1231-1232.	2.3	0
4	Optimization of Lipid Nanoparticles for saRNA Expression and Cellular Activation Using a Design-of-Experiment Approach. Molecular Pharmaceutics, 2022, 19, 1892-1905.	2.3	30
5	Effect of complexing lipids on cellular uptake and expression of messenger RNA in human skin explants. Journal of Controlled Release, 2021, 330, 1250-1261.	4.8	28
6	An Update on Self-Amplifying mRNA Vaccine Development. Vaccines, 2021, 9, 97.	2.1	117
7	Next-generation COVID-19 vaccines: here come the proteins. Lancet, The, 2021, 397, 643-645.	6.3	9
8	Innate Inhibiting Proteins Enhance Expression and Immunogenicity of Self-Amplifying RNA. Molecular Therapy, 2021, 29, 1174-1185.	3.7	40
9	Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases. Npj Vaccines, 2021, 6, 65.	2.9	36
10	Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice. Nature Communications, 2021, 12, 2893.	5.8	104
11	Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants. Biomaterials, 2021, 273, 120806.	5.7	41
12	The next generation of RNA vaccines: self-amplifying RNA. Biochemist, 2021, 43, 14-17.	0.2	14
13	Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. Journal of Controlled Release, 2021, 338, 201-210.	4.8	53
14	Neutrophils Enable Local and Nonâ€Invasive Liposome Delivery to Inflamed Skeletal Muscle and Ischemic Heart. Advanced Materials, 2020, 32, e2003598.	11.1	66
15	An improved synthesis of poly(amidoamine)s for complexation with self-amplifying RNA and effective transfection. Polymer Chemistry, 2020, 11, 5861-5869.	1.9	8
16	Ornithine-derived oligomers and dendrimers for <i>in vitro</i> delivery of DNA and <i>ex vivo</i> transfection of skin cells <i>via</i> saRNA. Journal of Materials Chemistry B, 2020, 8, 4940-4949.	2.9	15
17	Precisely targeted gene delivery in human skin using supramolecular cationic glycopolymers. Polymer Chemistry, 2020, 11, 3768-3774.	1.9	8
18	The <i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> Effect of Polymer Hydrophobicity on Charge-Reversible Vectors for Self-Amplifying RNA. Biomacromolecules, 2020, 21, 3242-3253.	2.6	20

Anna K Blakney

#	Article	IF	CITATIONS
19	Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature Communications, 2020, 11, 3523.	5.8	357
20	Mannosylated Poly(ethylene imine) Copolymers Enhance saRNA Uptake and Expression in Human Skin Explants. Biomacromolecules, 2020, 21, 2482-2492.	2.6	30
21	Big Is Beautiful: Enhanced saRNA Delivery and Immunogenicity by a Higher Molecular Weight, Bioreducible, Cationic Polymer. ACS Nano, 2020, 14, 5711-5727.	7.3	92
22	Geografiese ligging beÃ ⁻ nvloed vaginale mikrobiese profiele in Suid-Afrikaanse vroue. South African Journal of Science and Technology, 2020, 38, 41-49.	0.1	1
23	Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Therapy, 2019, 26, 363-372.	2.3	137
24	Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of saRNA. Journal of Controlled Release, 2019, 304, 65-74.	4.8	30
25	The Skin You Are In: Design-of-Experiments Optimization of Lipid Nanoparticle Self-Amplifying RNA Formulations in Human Skin Explants. ACS Nano, 2019, 13, 5920-5930.	7.3	44
26	One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes. Biomacromolecules, 2018, 19, 2870-2879.	2.6	51
27	Microbial Composition Predicts Genital Tract Inflammation and Persistent Bacterial Vaginosis in South African Adolescent Females. Infection and Immunity, 2018, 86, .	1.0	136
28	Structural Components for Amplification of Positive and Negative Strand VEEV Splitzicons. Frontiers in Molecular Biosciences, 2018, 5, 71.	1.6	31
29	In vitro–ex vivo correlations between a cell-laden hydrogel and mucosal tissue for screening composite delivery systems. Drug Delivery, 2017, 24, 582-590.	2.5	10
30	Nanoparticle-releasing nanofiber composites for enhanced inÂvivo vaginal retention. Biomaterials, 2017, 144, 1-16.	5.7	55
31	Application of electrospun fibers for female reproductive health. Drug Delivery and Translational Research, 2017, 7, 796-804.	3.0	19
32	Simultaneous measurement of etravirine, maraviroc and raltegravir in pigtail macaque plasma, vaginal secretions and vaginal tissue using a LC–MS/MS assay. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1025, 110-118.	1.2	11
33	Delayed BCG immunization does not alter antibody responses to EPI vaccines in HIV-exposed and -unexposed South African infants. Vaccine, 2016, 34, 3702-3709.	1.7	9
34	Rapidly Biodegrading PLGA-Polyurethane Fibers for Sustained Release of Physicochemically Diverse Drugs. ACS Biomaterials Science and Engineering, 2016, 2, 1595-1607.	2.6	26
35	In pursuit of functional electrospun materials for clinical applications in humans. Therapeutic Delivery, 2016, 7, 387-409.	1.2	32
36	Reply to Thysen et al. Journal of Infectious Diseases, 2015, 212, 1342-1343.	1.9	1

ANNA K BLAKNEY

#	Article	IF	CITATIONS
37	Nanoparticle-Based ARV Drug Combinations for Synergistic Inhibition of Cell-Free and Cell–Cell HIV Transmission. Molecular Pharmaceutics, 2015, 12, 4363-4374.	2.3	40
38	Delayed BCG vaccination results in minimal alterations in T cell immunogenicity of acellular pertussis and tetanus immunizations in HIV-exposed infants. Vaccine, 2015, 33, 4782-4789.	1.7	10
39	Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials, 2015, 41, 26-36.	5.7	129
40	Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. Biomaterials, 2015, 41, 79-88.	5.7	122
41	Delivery of multipurpose prevention drug combinations from electrospun nanofibers using composite microarchitectures. International Journal of Nanomedicine, 2014, 9, 2967.	3.3	67
42	A Hydrogel Tissue Model for Evaluation of Triple-antiretroviral Electrospun Fibers as a Microbicide. AIDS Research and Human Retroviruses, 2014, 30, A156-A156.	0.5	0
43	Intramyocardial Injection of a Synthetic Hydrogel with Delivery of bFGF and IGF1 in a Rat Model of Ischemic Cardiomyopathy. Biomacromolecules, 2014, 15, 1-11.	2.6	41
44	Electrospun fibers for vaginal anti-HIV drug delivery. Antiviral Research, 2013, 100, S9-S16.	1.9	84
45	Understanding the host response to cell-laden poly(ethylene glycol)-based hydrogels. Biomaterials, 2013, 34, 952-964.	5.7	30
46	Student award winner in the undergraduate category for the society of biomaterials 9th World Biomaterials Congress, Chengdu, China, June 1–5, 2012. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1375-1386.	2.1	367
47	Temporal progression of the host response to implanted poly(ethylene glycol)â€based hydrogels. Journal of Biomedical Materials Research - Part A, 2011, 96A, 621-631.	2.1	70