
Wenhao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5178127/publications.pdf Version: 2024-02-01

WENHAO CHEN

#	Article	IF	CITATIONS
1	Three-dimensional hierarchically porous nitrogen-doped carbon from water hyacinth as selenium host for high-performance lithium–selenium batteries. Rare Metals, 2022, 41, 3432-3445.	3.6	119
2	Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries. Electrochimica Acta, 2017, 246, 1088-1096.	2.6	99
3	Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2016, 194, 10-16.	2.6	82
4	Bean-dreg-derived carbon materials used as superior anode material for lithium-ion batteries. Electrochimica Acta, 2016, 222, 551-560.	2.6	68
5	Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries. Chemical Engineering Journal, 2018, 353, 666-678.	6.6	66
6	The investigation of the electrochemically supercapacitive performances of mesoporous CuCo ₂ S ₄ . RSC Advances, 2016, 6, 84236-84241.	1.7	65
7	Characterization of graphite oxide after heat treatment. New Journal of Chemistry, 2012, 36, 1373.	1.4	52
8	Nitrogen/sulfur co-doped ordered carbon nanoarrays for superior sulfur hosts in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2019, 554, 711-721.	5.0	41
9	Rational Fabrication of Nitrogen and Sulfur Codoped Carbon Nanotubes/MoS ₂ for Highâ€Performance Lithium–Sulfur Batteries. ChemSusChem, 2019, 12, 3602-3614.	3.6	39
10	Box-implanted Nb2O5 nanorods as superior anode materials in lithium ion batteries. Ceramics International, 2017, 43, 12388-12395.	2.3	37
11	Synthesis of a symmetric bundle-shaped Sb2O3 and its application for anode materials in lithium ion batteries. Materials Letters, 2018, 212, 103-106.	1.3	36
12	Scalable and controllable synthesis of multi-shell hollow carbon microspheres for high-performance supercapacitors. Carbon, 2019, 154, 330-341.	5.4	34
13	Self-Supported Sisal-like CuCo ₂ O ₄ @Ni(OH) ₂ Core–Shell Composites Grown on Ni Foam for High-Performance All-Solid State Supercapacitors. Industrial & Engineering Chemistry Research, 2019, 58, 21233-21241.	1.8	33
14	Bio-template fabrication of nitrogen-doped Li3V2(PO4)3/carbon composites from cattail fibers and their high-rate performance in lithium-ion batteries. Journal of Alloys and Compounds, 2019, 782, 89-99.	2.8	31
15	Dendrite-free lithium deposition induced by mechanical strong sponge-supported unique 3D cross-linking polymer electrolyte for lithium metal batteries. Journal of Power Sources, 2019, 435, 226748.	4.0	29
16	Preparation, structure, and electrochemical performance of anodes from artificial graphite scrap for lithium ion batteries. Journal of Materials Science, 2011, 46, 2140-2147.	1.7	22
17	Nb 2 O 5 nanospheres/surface-modified graphene composites as superior anode materials in lithium ion batteries. Ceramics International, 2017, 43, 6232-6238.	2.3	20
18	β-VO2/carbon nanotubes core-shelled microspheres and their applications for advanced cathode in aqueous zinc ion batteries. Electrochimica Acta, 2021, 400, 139425.	2.6	19

Wenhao Chen

#	Article	IF	CITATIONS
19	Ultraâ€long cycle life and high rate performance subglobose <scp> Na ₃ V ₂ </scp> (<scp> PO ₄ </scp>) <scp> ₂ F ₃ </scp> @C cathode and its regulation. International Journal of Energy Research, 2020, 44, 6608-6622.	2.2	18
20	Boric Acid–Catalyzed Hard Carbon Microfiber Derived from Cotton as a Highâ€Performance Anode for Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1801164.	1.8	17
21	Graphene-Like Carbon Derived from Macadamia Nut Shells for High-Performance Supercapacitor. Russian Journal of Electrochemistry, 2019, 55, 242-246.	0.3	17
22	Structure Rearrangement and V(IV) Doping for V ₂ O ₅ as Ultralong-Life and Ultrahigh-Rate Cathode in Aqueous Zinc-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2805-A2813.	1.3	15
23	Facile synthesis of CuO–NiO nanocomposites with high surface areas and their application for lithiumâ€ion batteries. Micro and Nano Letters, 2013, 8, 544-548.	0.6	14
24	Facile preparation of Nb2O5 microspheres and their excellent electrochemical performance in aqueous zinc-ion hybrid supercapacitors. Rare Metals, 2022, 41, 3129-3141.	3.6	13
25	Preparation of Mn3O4-CNTs microspheres as an improved sulfur hosts for lithium-sulfur batteries. Materials Letters, 2018, 229, 272-276.	1.3	12
26	Frogegg-like Li 3 V 2 (PO 4) 3 /carbon composite with three dimensional porous structure and its improved electrochemical performance in lithium ion batteries. Materials Letters, 2017, 204, 104-107.	1.3	11
27	Biomass carbon materials derived from macadamia nut shells for high-performance supercapacitors. Bulletin of Materials Science, 2018, 41, 1.	0.8	11
28	Porous, nitrogen-doped Li3V2(PO4)3/C cathode materials derived from oroxylum and their exceptional electrochemical properties in lithium-ion batteries. Ceramics International, 2019, 45, 4980-4989.	2.3	11
29	Selective preparation of graphene- and rope-like NanoCarbons from camellia wastes as high performance electrode materials for energy storage. Journal of Alloys and Compounds, 2019, 811, 151616.	2.8	10
30	Nb ₂ O ₅ -Decorated Nitrogen-Doped Carbon Nanotube Microspheres for Highly Efficient Sulfur Confinement in Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2019, 58, 8724-8733.	1.8	10
31	Intertwined Nitrogenâ€Doped Carbon Nanotube Microsphere as Polysulfide Grappler for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 1466-1474.	1.7	10
32	Li 3 V 2 (PO 4) 3 /C composite with hollow coaxial structure for high-capacity and high-rate performance in lithium-ion batteries. Materials Letters, 2018, 216, 46-49.	1.3	9
33	Hierarchical porous LiFePO ₄ /Carbon composite electrodes for lithium-ion batteries. Materials Technology, 2017, 32, 203-209.	1.5	8
34	Porous carbons derived from tea-seed shells and their improved electrochemical performance in lithium-ion batteries and supercapacitors. Materials Technology, 2018, 33, 443-450.	1.5	8
35	Rock Salt-Type LiTiO2@LiNi0.5Co0.2Mn0.3O2 as Cathode Materials with High Capacity Retention Rate and Stable Structure. Industrial & Engineering Chemistry Research, 2019, 58, 18498-18507.	1.8	8
36	Bio-templated fabrication of lotus root-like Li3V2(PO4)3/C composite from dandelion for use in lithium-ion batteries. Ceramics International, 2019, 45, 13438-13446.	2.3	8

Wenhao Chen

#	Article	IF	CITATIONS
37	Preparation of Ternary Precursor Derived from Spent LiNixCoyMn1â^'xâ^'yO2 Materials. Jom, 2019, 71, 4492-4499.	0.9	7
38	A novel SiO2 nanofiber-supported organic–inorganic gel polymer electrolyte for dendrite-free lithium metal batteries. Journal of Materials Science, 2020, 55, 9504-9515.	1.7	7
39	Nitrogen/sulfur coâ€doping for biomass carbon foam as superior sulfur hosts for lithiumâ€sulfur batteries. International Journal of Energy Research, 2022, 46, 10606-10619.	2.2	7
40	Seed-induced synthesis of flower-like a Li3V2(PO4)3/carbon composite and its application in lithium-ion batteries. Journal of Alloys and Compounds, 2018, 766, 54-65.	2.8	6
41	Synthesis of Hollow Carbon Microspheres with Tunable Shell Numbers for High-Performance Anode Material in Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 4899-4906.	0.9	6
42	Preparation of Nb2O5 with an air filter-like structure and its excellent electrochemical performance in supercapacitors. Journal of Alloys and Compounds, 2019, 802, 668-674.	2.8	5
43	Improving Electrochemical Performance and Structural Stability of LiNi0.6Co0.2Mn0.2O2 via Nanoscale Coating with LiTiO2. Jom, 2020, 72, 2250-2259.	0.9	5
44	Preparation and characterization LiFePO4/C nanowires and their improved performance for lithium-ion batteries. Ionics, 2015, 21, 2465-2469.	1.2	4
45	Facile Preparation of Nb ₂ O ₅ @Carbon Hollow Microspheres as High-Performance Anode Materials for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2019, 19, 268-271.	0.9	4
46	Facile Synthesis of Tremella-Like V ₂ O ₅ Microspheres and Their Application as Cathode Materials in Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2019, 19, 194-198.	0.9	4
47	Preparation and lithium storage performance of silicon and carbon microrods by chemical vapor co-deposition. Russian Journal of Electrochemistry, 2016, 52, 181-184.	0.3	2
48	Li1.1V0.9O2/C Microspheres with Isomeric Coreâ€6hell structure and their Improved Lithium Storage Performance for Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 3708-3716.	1.7	2
49	Facile Synthesis of Tremella-Like Li ₃ V ₂ (PO ₄) ₃ /C Composite Cathode Materials Based on Oroxylum for Use in Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 1962-1967.	0.9	0