
Hanzheng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5178053/publications.pdf Version: 2024-02-01

#	ARTICLEN and Destruction of Morphotropic Phase Boundaries through Electrical Poling: A Case Study	IF	CITATIONS
	ARTICLE: and Destruction of Morphotropic Phase Boundaries through Electrical Poling: A Case Study of Lead-Free <mmi:math bold"<="" td="" xmins:mmi="http://www.w3.org/1998/Wath/Wath/Wath/Wath/Wath/Wath/Wath/Wath</td><td></td><td></td></tr><tr><td></td><td>mathvariant="><td></td><td></td></mmi:math>		
1			

HANZHENG GUO

#	Article	IF	CITATIONS
19	Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity. Ceramics International, 2017, 43, 15370-15374.	4.8	69
20	Utilizing the Cold Sintering Process for Flexible–Printable Electroceramic Device Fabrication. Journal of the American Ceramic Society, 2016, 99, 3202-3204.	3.8	67
21	A perovskite lead-free antiferroelectric xCaHfO3-(1-x) NaNbO3 with induced double hysteresis loops at room temperature. Journal of Applied Physics, 2016, 120, .	2.5	64
22	Cold sintering process for ZrO ₂ â€based ceramics: significantly enhanced densification evolution in yttriaâ€doped ZrO ₂ . Journal of the American Ceramic Society, 2017, 100, 491-495.	3.8	64
23	Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics. APL Materials, 2018, 6, .	5.1	62
24	Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics. Angewandte Chemie, 2016, 128, 11629-11633.	2.0	61
25	Cold sintering and coâ€firing of a multilayer device with thermoelectric materials. Journal of the American Ceramic Society, 2017, 100, 3488-3496.	3.8	60
26	Unique single-domain state in a polycrystalline ferroelectric ceramic. Physical Review B, 2014, 89, .	3.2	59
27	Current progress and perspectives of applying cold sintering process to ZrO2-based ceramics. Scripta Materialia, 2017, 136, 141-148.	5.2	58
28	Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics. Journal of Applied Physics, 2013, 114, .	2.5	56
29	Stabilized antiferroelectricity in xBiScO3-(1-x)NaNbO3 lead-free ceramics with established double hysteresis loops. Applied Physics Letters, 2018, 112, .	3.3	56
30	Base Metal Co-Fired Multilayer Piezoelectrics. Actuators, 2016, 5, 8.	2.3	55
31	Block copolymer/ferroelectric nanoparticle nanocomposites. Nanoscale, 2013, 5, 8695.	5.6	54
32	Demonstration of Copper Coâ€Fired (Na, K)NbO ₃ Multilayer Structures for Piezoelectric Applications. Journal of the American Ceramic Society, 2016, 99, 2017-2023.	3.8	52
33	Disrupting long-range polar order with an electric field. Physical Review B, 2016, 93, .	3.2	50
34	Nanofragmentation of Ferroelectric Domains During Polarization Fatigue. Advanced Functional Materials, 2015, 25, 270-277.	14.9	47
35	Domain configuration changes under electric field-induced antiferroelectric-ferroelectric phase transitions in NaNbO3-based ceramics. Journal of Applied Physics, 2015, 118, .	2.5	46
36	Semiconducting properties of cold sintered V2O5 ceramics and Co-sintered V2O5-PEDOT:PSS composites. Journal of the European Ceramic Society, 2017, 37, 1529-1534.	5.7	46

#	Article	IF	CITATIONS
37	Effect of <scp><scp>Ba</scp> </scp> Content on the Stress Sensitivity of the Antiferroelectric to Ferroelectric Phase Transition in (<scp><scp>Pb</scp>,<scp>,<scp>La</scp>,<scp>,<scp>Ba</scp>,(scp>,)(<scp>,<scp>Zr</scp> Ceramics, Journal of the American Ceramic Society, 2014, 97, 206-212.</scp></scp></scp></scp>	3.8/scp	>< <mark>44</mark> > <scp>Sn</scp>
38	Seedâ€Free Solid‣tate Growth of Large Leadâ€Free Piezoelectric Single Crystals: (Na _{1/2} K _{1/2})NbO ₃ . Journal of the American Ceramic Society, 2015, 98, 2988-2996.	3.8	43
39	Interplay of conventional with inverse electrocaloric response in (Pb,Nb)(Zr,Sn,Ti)O3 antiferroelectric materials. Physical Review B, 2018, 97, .	3.2	42
40	Direct observation of the recovery of an antiferroelectric phase during polarization reversal of an induced ferroelectric phase. Physical Review B, 2015, 91, .	3.2	33
41	Microstructural evolution in NaNbO3-based antiferroelectrics. Journal of Applied Physics, 2015, 118, .	2.5	27
42	Structure evolution and dielectric behavior of polystyrene-capped barium titanate nanoparticles. Journal of Materials Chemistry, 2012, , .	6.7	17
43	Thermal analysis of phase transitions in perovskite electroceramics. Journal of Thermal Analysis and Calorimetry, 2014, 115, 587-593.	3.6	15
44	Microstructures and electrical properties of V2O5and carbon-nanofiber composites fabricated by cold sintering process. Japanese Journal of Applied Physics, 2018, 57, 025702.	1.5	15
45	Contrasting conduction mechanisms of two internal barrier layer capacitors: (Mn, Nb)-doped SrTiO3 and CaCu3Ti4O12. Journal of Applied Physics, 2017, 121, .	2.5	14
46	Considering the possibility of bonding utilizing cold sintering for ceramic adhesives. Journal of the American Ceramic Society, 2017, 100, 5421-5432.	3.8	12
47	In situ TEM study on the microstructural evolution during electric fatigue in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramic. Journal of Materials Research, 2015, 30, 364-372.	2.6	10
48	Valence and electronic trap states of manganese in SrTiO ₃ -based colossal permittivity barrier layer capacitors. RSC Advances, 2016, 6, 92127-92133.	3.6	10
49	High-temperature thermoelectric characterization of filled strontium barium niobates: power factors and carrier concentrations. Journal of Materials Research, 2017, 32, 1160-1167.	2.6	10
50	Dynamics of polystyrene-block-poly(methylmethacrylate) (PS-b-PMMA) diblock copolymers and PS/PMMA blends: A dielectric study. Journal of Non-Crystalline Solids, 2013, 359, 27-32.	3.1	7
51	Filled oxygenâ€deficient strontium barium niobates. Journal of the American Ceramic Society, 2017, 100, 774-782.	3.8	6