
C Geoffrey Burns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5178019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Dynamic Epicardial Injury Response Supports Progenitor Cell Activity during Zebrafish Heart Regeneration. Cell, 2006, 127, 607-619.	28.9	762
2	High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nature Chemical Biology, 2005, 1, 263-264.	8.0	320
3	Heart Malformation Is an Early Response to TCDD in Embryonic Zebrafish. Toxicological Sciences, 2005, 84, 368-377.	3.1	276
4	Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature, 2011, 474, 645-648.	27.8	227
5	heart of glass Regulates the Concentric Growth of the Heart in Zebrafish. Current Biology, 2003, 13, 2138-2147.	3.9	224
6	Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. Developmental Cell, 2015, 34, 387-399.	7.0	217
7	Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1403-1408.	7.1	216
8	Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Developmental Cell, 2018, 44, 433-446.e7.	7.0	203
9	Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxford, England), 2017, 4, 105-123.	6.3	139
10	Chemokine-Guided Angiogenesis Directs Coronary Vasculature Formation in Zebrafish. Developmental Cell, 2015, 33, 442-454.	7.0	117
11	Chamber identity programs drive early functional partitioning of the heart. Nature Communications, 2015, 6, 8146.	12.8	103
12	Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism. Cell Reports, 2019, 26, 546-554.e5.	6.4	95
13	Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and <i>nkx2.5</i> function. Development (Cambridge), 2013, 140, 1353-1363.	2.5	90
14	The miR-143- <i>adducin3</i> pathway is essential for cardiac chamber morphogenesis. Development (Cambridge), 2010, 137, 1887-1896.	2.5	87
15	Voltage-Gated Sodium Channels Are Required for Heart Development in Zebrafish. Circulation Research, 2010, 106, 1342-1350.	4.5	78
16	Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature, 2016, 534, 700-704.	27.8	75
17	Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Circulation, 2018, 137, 2152-2165.	1.6	67
18	Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nature Cell Biology, 2013, 15, 1362-1369.	10.3	63

C GEOFFREY BURNS

#	Article	IF	CITATIONS
19	Chondroitin sulfate expression is required for cardiac atrioventricular canal formation. Developmental Dynamics, 2009, 238, 3103-3110.	1.8	51
20	Tbx1 is required for second heart field proliferation in zebrafish. Developmental Dynamics, 2013, 242, 550-559.	1.8	45
21	Purification of hearts from zebrafish embryos. BioTechniques, 2006, 40, 278-282.	1.8	41
22	Purification of hearts from zebrafish embryos. BioTechniques, 2006, 40, 274, 276, 278 passim.	1.8	39
23	The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development (Cambridge), 2016, 143, 113-122.	2.5	36
24	Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development (Cambridge), 2017, 144, 4616-4624.	2.5	34
25	H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development (Cambridge), 2019, 146, .	2.5	33
26	Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. ELife, 2019, 8, .	6.0	30
27	Deep learning enables automated volumetric assessments of cardiac function in zebrafish. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	24
28	TGF-Î ² Signaling Is Necessary and Sufficient for Pharyngeal Arch Artery Angioblast Formation. Cell Reports, 2017, 20, 973-983.	6.4	19
29	Failed Progenitor Specification Underlies the Cardiopharyngeal Phenotypes in a Zebrafish Model of 22q11.2 Deletion Syndrome. Cell Reports, 2018, 24, 1342-1354.e5.	6.4	18
30	Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatric Cardiology, 2019, 40, 1410-1418.	1.3	14
31	Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	10
32	Innate Mechanisms of Heart Regeneration. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040766.	5.5	5
33	A crowning achievement for deciphering coronary origins. Science, 2014, 345, 28-29.	12.6	4
34	Canonical Wnt Signaling Sets the Pace. Developmental Cell, 2019, 50, 675-676.	7.0	4
35	Ruvbl2 Suppresses Cardiomyocyte Proliferation During Zebrafish Heart Development and Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 800594.	3.7	0