
Emilio Camacho Poyato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5177986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An ICT-based decision support system for precision irrigation management in outdoor orange and greenhouse tomato crops. Agricultural Water Management, 2022, 269, 107686.	2.4	3
2	Forecasting of applied irrigation depths at farm level for energy tariff periods using Coactive neuro-genetic fuzzy system. Agricultural Water Management, 2021, 256, 107068.	2.4	13
3	Open-Source Application for Water Supply System Management: Implementation in a Water Transmission System in Southern Spain. Water (Switzerland), 2021, 13, 3652.	1.2	6
4	Comprehensive sizing methodology of smart photovoltaic irrigation systems. Agricultural Water Management, 2020, 229, 105888.	2.4	9
5	Open source application for optimum irrigation and fertilization using reclaimed water in olive orchards. Computers and Electronics in Agriculture, 2020, 173, 105407.	3.7	11
6	Middleware to Operate Smart Photovoltaic Irrigation Systems in Real Time. Water (Switzerland), 2019, 11, 1508.	1.2	7
7	Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renewable Energy, 2019, 140, 895-904.	4.3	52
8	REUTIVAR: Model for Precision Fertigation Scheduling for Olive Orchards Using Reclaimed Water. Water (Switzerland), 2019, 11, 2632.	1.2	6
9	Prediction of irrigation event occurrence at farm level using optimal decision trees. Computers and Electronics in Agriculture, 2019, 157, 173-180.	3.7	38
10	Optimisation of water demand forecasting by artificial intelligence with short data sets. Biosystems Engineering, 2019, 177, 59-66.	1.9	68
11	Hydro-power energy recovery in pressurized irrigation networks: A case study of an Irrigation District in the South of Spain. Agricultural Water Management, 2018, 204, 17-27.	2.4	34
12	Coupling irrigation scheduling with solar energy production in a smart irrigation management system. Journal of Cleaner Production, 2018, 175, 670-682.	4.6	86
13	Modelling impacts of precision irrigation on crop yield and in-field water management. Precision Agriculture, 2018, 19, 497-512.	3.1	45
14	Optimal Design of Pressurized Irrigation Networks to Minimize the Operational Cost under Different Management Scenarios. Water Resources Management, 2017, 31, 1995-2010.	1.9	20
15	Semi-arranged demand as an energy saving measure for pressurized irrigation networks. Agricultural Water Management, 2017, 193, 22-29.	2.4	11
16	Drip Irrigation Scheduling Using Hydrus 2â€D Numerical Model Application for Strawberry Production in Southâ€West Spain. Irrigation and Drainage, 2017, 66, 797-807.	0.8	13
17	Multiplatform application for precision irrigation scheduling in strawberries. Agricultural Water Management, 2017, 183, 194-201.	2.4	30
18	Incorporating the Irrigation Demand Simultaneity in the Optimal Operation of Pressurized Networks with Several Water Supply Points. Water Resources Management, 2016, 30, 1085-1099.	1.9	4

#	Article	IF	CITATIONS
19	Rehabilitating pressurized irrigation networks for an increased energy efficiency. Agricultural Water Management, 2016, 164, 212-222.	2.4	9
20	Optimization of Irrigation Scheduling Using Soil Water Balance and Genetic Algorithms. Water Resources Management, 2016, 30, 2815-2830.	1.9	38
21	Influence of spatio temporal scales in crop water footprinting and water use management: Evidences from sugar beet production in Northern Spain. Journal of Cleaner Production, 2016, 139, 1485-1495.	4.6	20
22	Energy cost optimization in pressurized irrigation networks. Irrigation Science, 2016, 34, 1-13.	1.3	30
23	Irrigation Demand Forecasting Using Artificial Neuro-Genetic Networks. Water Resources Management, 2015, 29, 5551-5567.	1.9	21
24	Toward precision irrigation for intensive strawberry cultivation. Agricultural Water Management, 2015, 151, 43-51.	2.4	50
25	Linking water footprint accounting with irrigation management in high value crops. Journal of Cleaner Production, 2015, 87, 594-602.	4.6	79
26	Methodology for Detecting Critical Points in Pressurized Irrigation Networks with Multiple Water Supply Points. Water Resources Management, 2014, 28, 1095-1109.	1.9	16
27	Critical points: interactions between on-farm irrigation systems and water distribution network. Irrigation Science, 2014, 32, 255-265.	1.3	22
28	Effects of modernization and medium term perspectives on water and energy use in irrigation districts. Agricultural Systems, 2014, 131, 56-63.	3.2	52
29	New model for sustainable management of pressurized irrigation networks. Application to Bembézar MD irrigation district (Spain). Science of the Total Environment, 2014, 473-474, 1-8.	3.9	22
30	Assessing the potential of solar energy in pressurized irrigation networks. The case of Bembézar MI irrigation district (Spain). Spanish Journal of Agricultural Research, 2014, 12, 838.	0.3	17
31	Optimal Operation of Pressurized Irrigation Networks with Several Supply Sources. Water Resources Management, 2013, 27, 2855-2869.	1.9	38
32	Modernizing Water Distribution Networks. Outlook on Agriculture, 2012, 41, 229-236.	1.8	32
33	Impacts of irrigation network sectoring as an energy saving measure on olive grove production. Journal of Environmental Management, 2012, 111, 1-9.	3.8	24
34	Detecting Critical Points in On-Demand Irrigation Pressurized Networks – A New Methodology. Water Resources Management, 2012, 26, 1693-1713.	1.9	48
35	Evaluation of Water and Energy Use in Pressurized Irrigation Networks in Southern Spain. Journal of Irrigation and Drainage Engineering - ASCE, 2011, 137, 644-650.	0.6	72
36	Analysis of Virtual Irrigation Water. Application to Water Resources Management in a Mediterranean River Basin. Water Resources Management, 2011, 25, 1635-1651.	1.9	45

#	Article	IF	CITATIONS
37	Low energy consumption seasonal calendar for sectoring operation in pressurized irrigation networks. Irrigation Science, 2011, 29, 157-169.	1.3	46
38	Quality of Service in Irrigation Distribution Networks: Case of Palos de la Frontera Irrigation District (Spain). Journal of Irrigation and Drainage Engineering - ASCE, 2009, 135, 755-762.	0.6	18
39	Exploring energy saving scenarios for on-demand pressurised irrigation networks. Biosystems Engineering, 2009, 104, 552-561.	1.9	66
40	Model to Forecast Maximum Flows in On-Demand Irrigation Distribution Networks. Journal of Irrigation and Drainage Engineering - ASCE, 2007, 133, 222-231.	0.6	28
41	Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Regional Environmental Change, 2007, 7, 149-159.	1.4	212
42	IGRA. A tool for applying the benchmarking initiative to irrigated areas. Irrigation and Drainage, 2005, 54, 307-319.	0.8	6
43	Seasonal furrow irrigation model with genetic algorithms (OPTIMEC). Agricultural Water Management, 2001, 52, 1-16.	2.4	20