
## Gavin M King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5177559/publications.pdf Version: 2024-02-01



CAVIN M KINC

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Direct visualization of conformations and conformational dynamics of the proton-driven translocation factor SecDF in supported lipid bilayers. Biophysical Journal, 2022, 121, 468a.                   | 0.2 | Ο         |
| 2  | Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax. Faraday Discussions, 2021, 232, 114-130.                                                                         | 1.6 | 2         |
| 3  | Towards a Quantitative Understanding of Protein–Lipid Bilayer Interactions at the Single Molecule<br>Level: Opportunities and Challenges. Journal of Membrane Biology, 2021, 254, 17-28.               | 1.0 | 4         |
| 4  | Atomic Force Microscopy Reveals Membrane Protein Activity at the Single Molecule Level. Methods in<br>Molecular Biology, 2021, 2302, 81-99.                                                            | 0.4 | 2         |
| 5  | Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling.<br>Methods, 2020, 197, 20-20.                                                                      | 1.9 | 7         |
| 6  | Characterizing the Locus of a Peripheral Membrane Protein–Lipid Bilayer Interaction Underlying<br>Protein Export Activity inE. coli. Langmuir, 2020, 36, 2143-2152.                                    | 1.6 | 5         |
| 7  | The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences. Biochemical Pharmacology, 2020, 174, 113813.                  | 2.0 | 13        |
| 8  | Protein Translocation Activity in Surface-Supported Lipid Bilayers. Langmuir, 2019, 35, 12246-12256.                                                                                                   | 1.6 | 10        |
| 9  | Multiple stochastic pathways in forced peptide-lipid membrane detachment. Scientific Reports, 2019, 9,<br>451.                                                                                         | 1.6 | 9         |
| 10 | Direct visualization of the <i>E. coli</i> Sec translocase engaging precursor proteins in lipid bilayers.<br>Science Advances, 2019, 5, eaav9404.                                                      | 4.7 | 19        |
| 11 | Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid<br>Bilayers. Journal of the American Chemical Society, 2019, 141, 6706-6718.                              | 6.6 | 30        |
| 12 | Potent Macromolecule-Sized Poration of Lipid Bilayers by the Macrolittins, A Synthetically Evolved<br>Family of Pore-Forming Peptides. Journal of the American Chemical Society, 2018, 140, 6441-6447. | 6.6 | 41        |
| 13 | The Hessian Blob Algorithm: Precise Particle Detection in Atomic Force Microscopy Imagery. Scientific<br>Reports, 2018, 8, 978.                                                                        | 1.6 | 45        |
| 14 | Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis. Science Advances, 2018, 4, eaat8797.                                                            | 4.7 | 23        |
| 15 | Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized<br>Pores in Lipid Bilayers. Langmuir, 2018, 34, 8393-8399.                                               | 1.6 | 15        |
| 16 | High-Resolution AFM-Based Force Spectroscopy. Methods in Molecular Biology, 2018, 1814, 49-62.                                                                                                         | 0.4 | 6         |
| 17 | The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy. Biochemical Pharmacology, 2018, 156, 302-311.                                              | 2.0 | 22        |
| 18 | Single-Molecule Peptide–Lipid Affinity Assay Reveals Interplay between Solution Structure and<br>Partitioning. Langmuir, 2017, 33, 4057-4065.                                                          | 1.6 | 14        |

Gavin M King

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Glass is a Viable Substrate for Precision Force Microscopy of Membrane Proteins. Scientific Reports, 2015, 5, 12550.                                                                                                 | 1.6 | 48        |
| 20 | Probing Protein-Lipid Interactions at the Single Molecule Level. Biophysical Journal, 2015, 108, 559a.                                                                                                               | 0.2 | 0         |
| 21 | Transient Collagen Triple Helix Binding to a Key Metalloproteinase in Invasion and Development.<br>Structure, 2015, 23, 257-269.                                                                                     | 1.6 | 30        |
| 22 | Heparinoids Activate a Protease, Secreted by Mucosa and Tumors, via Tethering Supplemented by<br>Allostery. ACS Chemical Biology, 2014, 9, 957-966.                                                                  | 1.6 | 12        |
| 23 | Glass is a Viable Substrate for Atomic Force Microscopy of Membrane Proteins. Biophysical Journal,<br>2014, 106, 458a.                                                                                               | 0.2 | 0         |
| 24 | Three-Dimensional Atomic Force Microscopy: Interaction Force Vector by Direct Observation of Tip<br>Trajectory. Nano Letters, 2013, 13, 5106-5111.                                                                   | 4.5 | 11        |
| 25 | Stoichiometry of SecYEG in the active translocase of <i>Escherichia coli</i> varies with precursor species. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11815-11820. | 3.3 | 38        |
| 26 | Dynamic Structure of the Translocon SecYEG in Membrane. Journal of Biological Chemistry, 2013, 288,<br>16848-16854.                                                                                                  | 1.6 | 33        |
| 27 | A Precision Force Microscope for Biophysics. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 31-36.                                                                                        | 0.3 | 0         |
| 28 | Routine and Timely Sub-picoNewton Force Stability and Precision for Biological Applications of Atomic Force Microscopy. Nano Letters, 2012, 12, 3557-3561.                                                           | 4.5 | 68        |
| 29 | Optical trapping meets atomic force microscopy: a precision force microscope for biophysics.<br>Proceedings of SPIE, 2010, , .                                                                                       | 0.8 | 0         |
| 30 | Label-free optical imaging of membrane patches for atomic force microscopy. Optics Express, 2010, 18, 23924.                                                                                                         | 1.7 | 7         |
| 31 | Ultrastable Atomic Force Microscopy using Laser-Based, Active Noise Cancelation. , 2010, , .                                                                                                                         |     | 0         |
| 32 | Ultrastable Atomic Force Microscopy: Atomic-Scale Stability and Registration in Ambient Conditions.<br>Nano Letters, 2009, 9, 1451-1456.                                                                             | 4.5 | 82        |
| 33 | Independent measurements of force and position in atomic force microscopy. Proceedings of SPIE, 2009, , .                                                                                                            | 0.8 | 1         |
| 34 | Improved performance of an ultrastable measurement platform using a field-programmable gate array for real-time deterministic control. Proceedings of SPIE, 2008, , .                                                | 0.8 | 4         |
| 35 | Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D. Optics Express, 2007, 15, 13434.                                                                           | 1.7 | 48        |
| 36 | Stabilization of an optical microscope to 01 nm in three dimensions. Applied Optics, 2007, 46, 421.                                                                                                                  | 2.1 | 126       |

Gavin M King

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Probing Nanotube-Nanopore Interactions. Physical Review Letters, 2005, 95, 216103.                                                                      | 2.9 | 42        |
| 38 | Nanometer Patterning with Ice. Nano Letters, 2005, 5, 1157-1160.                                                                                        | 4.5 | 46        |
| 39 | 3D Stabilization of an Optical Microscope to 0.1 nm at 1 Hz using an Array of Nano-Posts. , 2005, , .                                                   |     | 0         |
| 40 | Patterned growth of single-walled carbon nanotube arrays from a vapor-deposited Fe catalyst.<br>Applied Physics Letters, 2003, 83, 4238-4240.           | 1.5 | 79        |
| 41 | Spectroscopic study of food and food toxins. , 2003, , .                                                                                                |     | 4         |
| 42 | Attractive-mode force microscope for investigations of biomolecules under ambient conditions.<br>Review of Scientific Instruments, 2001, 72, 4261-4265. | 0.6 | 8         |
| 43 | Quartz tuning forks as sensors for attractive-mode force microscopy under ambient conditions.<br>Applied Physics Letters, 2001, 79, 1712-1714.          | 1.5 | 30        |