Chao Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/517747/publications.pdf

Version: 2024-02-01

42 papers 1,970 citations

257450 24 h-index 276875 41 g-index

42 all docs 42 docs citations

42 times ranked 2482 citing authors

#	Article	IF	CITATIONS
1	Phase Pure 2D Perovskite for Highâ€Performance 2D–3D Heterostructured Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805323.	21.0	244
2	Rearranging Low-Dimensional Phase Distribution of Quasi-2D Perovskites for Efficient Sky-Blue Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 11420-11430.	14.6	206
3	Lowâ€Dimensional Dion–Jacobsonâ€Phase Leadâ€Free Perovskites for Highâ€Performance Photovoltaics with Improved Stability. Angewandte Chemie - International Edition, 2020, 59, 6909-6914.	13.8	123
4	Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics. Advanced Materials, 2019, 31, e1901966.	21.0	96
5	Recent Progress in Metal Halide Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2019, 7, 1900080.	7.3	95
6	Ruddlesden–Popper Perovskite for Stable Solar Cells. Energy and Environmental Materials, 2018, 1, 221-231.	12.8	85
7	Chemical bath deposited rutile TiO 2 compact layer toward efficient planar heterojunction perovskite solar cells. Applied Surface Science, 2017, 391, 337-344.	6.1	76
8	Deep surface passivation for efficient and hydrophobic perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2919-2927.	10.3	74
9	Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation. Small, 2019, 15, e1905050.	10.0	70
10	Towards Simplifying the Device Structure of Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000863.	14.9	67
11	Mild solution-processed metal-doped TiO2 compact layers for hysteresis-less and performance-enhanced perovskite solar cells. Journal of Power Sources, 2017, 372, 235-244.	7.8	66
12	Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nature Communications, 2020, 11, 3361.	12.8	57
13	Polyethyleneimine High-Energy Hydrophilic Surface Interfacial Treatment toward Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32574-32580.	8.0	52
14	Realization of the Photostable Intrinsic Core Emission from Carbon Dots through Surface Deoxidation by Ultraviolet Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 3094-3100.	4.6	50
15	Surface Passivation Toward Efficient and Stable Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	12.8	46
16	Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy, 2019, 65, 104050.	16.0	44
17	Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells. Science China Materials, 2020, 63, 1518-1525.	6.3	41
18	Efficient Anti-solvent-free Spin-Coated and Printed Sn-Perovskite Solar Cells with Crystal-Based Precursor Solutions. Matter, 2020, 2, 167-180.	10.0	38

#	Article	IF	Citations
19	In Situ Growth of MAPbBr ₃ Nanocrystals on Fewâ€Layer MXene Nanosheets with Efficient Energy Transfer. Small, 2020, 16, e1905896.	10.0	38
20	Pure Bromideâ€Based Perovskite Nanoplatelets for Blue Lightâ€Emitting Diodes. Small Methods, 2019, 3, 1900196.	8.6	34
21	Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 6064-6071.	8.0	33
22	Simultaneously boost diffusion length and stability of perovskite for high performance solar cells. Nano Energy, 2019, 59, 721-729.	16.0	33
23	Enhanced efficiency and stability of perovskite solar cells by 2D perovskite vapor-assisted interface optimization. Journal of Energy Chemistry, 2020, 45, 103-109.	12.9	32
24	Lowâ€Dimensional Dion–Jacobsonâ€Phase Leadâ€Free Perovskites for Highâ€Performance Photovoltaics with Improved Stability. Angewandte Chemie, 2020, 132, 6976-6981.	2.0	26
25	Enhanced Efficiency of Perovskite Solar Cells by using Core–Ultrathin Shell Structure Ag@SiO ₂ Nanowires as Plasmonic Antennas. Advanced Electronic Materials, 2017, 3, 1700169.	5.1	24
26	Controlling the film structure by regulating 2D Ruddlesden–Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5874-5881.	10.3	23
27	Highâ€performance flexible perovskite photodetectors based on singleâ€crystalâ€like twoâ€dimensional Ruddlesden–Popper thin films. , 2023, 5, .		23
28	Solution-processable carbon dots with efficient solid-state red/near-infrared emission. Journal of Colloid and Interface Science, 2022, 613, 547-553.	9.4	21
29	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	14.9	18
30	Tailoring the Surface Morphology and Phase Distribution for Efficient Perovskite Electroluminescence. Journal of Physical Chemistry Letters, 2020, 11, 5877-5882.	4.6	17
31	Overcoming the Limitation of Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells Through Using Mesoporous TiO ₂ Electron Extraction Layer. Energy and Environmental Materials, 2022, 5, 1317-1322.	12.8	17
32	Doping Electron Transporting Layer: An Effective Method to Enhance ⟨i⟩J⟨li⟩⟨sub⟩SC⟨ sub⟩ of Allâ€ norganic Perovskite Solar Cells. Energy and Environmental Materials, 2021, 4, 500-501.	12.8	17
33	Morphology Control of Doped Spiroâ€MeOTAD Films for Air Stable Perovskite Solar Cells. Small, 2020, 16, e1907513.	10.0	16
34	Solutionâ€Processed Perovskite Microdisk for Coherent Light Emission. Advanced Optical Materials, 2019, 7, 1900678.	7.3	12
35	Two-Dimensional Heterostructure of MoS ₂ /BA ₂ PbI ₄ 2D Ruddlesden–Popper Perovskite with an S Scheme Alignment for Solar Cells: A First-Principles Study. ACS Applied Electronic Materials, 2022, 4, 1939-1948.	4.3	11
36	Efficient and Stable Perovskite Solar Cells via CsPF ₆ Passivation of Perovskite Film Defects. Journal of Physical Chemistry Letters, 2022, 13, 4598-4604.	4.6	11

#	Article	IF	CITATIONS
37	Phase Tailoring of Ruddlesden–Popper Perovskite at Fixed Large Spacer Cation Ratio. Small, 2021, 17, e2100560.	10.0	10
38	Manipulation of Band Alignment in Two-Dimensional Vertical WSe ₂ /BA ₂ Pbl ₄ Ruddlesden–Popper Perovskite Heterojunctions via Defect Engineering. Journal of Physical Chemistry Letters, 2022, 13, 4579-4588.	4.6	10
39	Perovskite Solar Cells: Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics (Adv. Mater. 35/2019). Advanced Materials, 2019, 31, 1970252.	21.0	6
40	High-performance perovskite solar cells resulting from large perovskite grain size enabled by the urea additive. Sustainable Energy and Fuels, 2022, 6, 2955-2961.	4.9	5
41	Photoluminescence: Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation (Small 50/2019). Small, 2019, 15, 1970288.	10.0	2
42	Inkjet printed perovskite solar cells: progress and prospects. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158807.	0.5	1