Tetsuo Tsukamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5177173/publications.pdf Version: 2024-02-01

		687363	642732
27	514	13	23
papers	citations	h-index	g-index
33	33	33	591
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Distinctive High Expression of Antiretroviral APOBEC3 Protein in Mouse Germinal Center B Cells. Viruses, 2022, 14, 832.	3.3	0
2	Editorial: Direct and Indirect Interactions of HIV With Host Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 771370.	3.9	1
3	Pulmonary monocytes interact with effector T cells in the lung tissue to drive TRM differentiation following viral infection. Mucosal Immunology, 2020, 13, 161-171.	6.0	32
4	Simian immunodeficiency virus infection and flow cytometric characterization of Japanese macaque () Tj ETQq0 C) 0 rgBT /(0.6	Overlock 10 T
5	Hematopoietic Stem/Progenitor Cells and the Pathogenesis of HIV/AIDS. Frontiers in Cellular and Infection Microbiology, 2020, 10, 60.	3.9	21
6	CD8 + Cytotoxic-T-Lymphocyte Breadth Could Facilitate Early Immune Detection of Immunodeficiency Virus-Derived Epitopes with Limited Expression Levels. MSphere, 2019, 4, .	2.9	3
7	Gene Therapy Approaches to Functional Cure and Protection of Hematopoietic Potential in HIV Infection, Pharmaceutics, 2019, 11, 114,	4.5	4

8	HIV Impacts CD34+ Progenitors Involved in T-Cell Differentiation During Coculture With Mouse Stromal OP9-DL1 Cells. Frontiers in Immunology, 2019, 10, 81.	4.8
---	--	-----

9	Spontaneous HIV controllers might be the key to prevent accelerated immunosenescence of effector CD8+ T cells. Aids, 2019, 33, 2253-2255.	2.2	0
10	Transcriptional gene silencing limits CXCR4-associated depletion of bone marrow CD34+ cells in HIV-1 infection. Aids, 2018, 32, 1737-1747.	2.2	15

11	The use of RetroNectin in studies requiring in vitro HIV-1 infection of human hematopoietic stem/progenitor cells. Journal of Virological Methods, 2017, 248, 234-237.	2.1	11
12	Recursion-based depletion of human immunodeficiency virus-specific naive CD4 + T cells may facilitate persistent viral replication and chronic viraemia leading to acquired immunodeficiency syndrome. Medical Hypotheses, 2016, 94, 81-85.	1.5	8
13	Association of Major Histocompatibility Complex Class I Haplotypes with Disease Progression after Simian Immunodeficiency Virus Challenge in Burmese Rhesus Macaques. Journal of Virology, 2012, 86, 6481-6490.	3.4	33
14	Impact of Vaccination on Cytotoxic T Lymphocyte Immunodominance and Cooperation against Simian Immunodeficiency Virus Replication in Rhesus Macaques. Journal of Virology, 2012, 86, 738-745.	3.4	20
15	Dominant induction of vaccine antigen-specific cytotoxic T lymphocyte responses after simian immunodeficiency virus challenge. Biochemical and Biophysical Research Communications, 2011, 408, 615-619.	2.1	2
16	Broadening of CD8+ cell responses in vaccine-based simian immunodeficiency virus controllers. Aids, 2010, 24, 2777-2787.	2.2	15
17	Polyfunctional CD4 ⁺ T-Cell Induction in Neutralizing Antibody-Triggered Control of Simian Immunodeficiency Virus Infection. Journal of Virology, 2009, 83, 5514-5524.	3.4	45

18	Impact of Cytotoxic-I-Lymphocyte Memory Induction without Virus-Specific CD4 ⁺ I-Cell Help on Control of a Simian Immunodeficiency Virus Challenge in Rhesus Macaques. Journal of Virology 2009 83, 9339-9346	3.4	40
	Virology, 2009, 83, 9339-9346.		

Τετѕио Τѕикамото

#	Article	IF	CITATIONS
19	P17-19. Impact of single epitope-specific CD8+ T cell memory induction by prophylactic vaccination on immunodeficiency virus control. Retrovirology, 2009, 6, .	2.0	0
20	Abrogation of AIDS vaccine-induced cytotoxic T-lymphocyte efficacy inÂvivo due to a change in viral epitope flanking sequences. Microbes and Infection, 2008, 10, 285-292.	1.9	10
21	Evaluation of the immunogenicity of replication-competent V-knocked-out and replication-defective F-deleted Sendai virus vector-based vaccines in macaques. Vaccine, 2008, 26, 6839-6843.	3.8	27
22	Gag-Specific Cytotoxic T-Lymphocyte-Based Control of Primary Simian Immunodeficiency Virus Replication in a Vaccine Trial. Journal of Virology, 2008, 82, 10199-10206.	3.4	57
23	Determination of a major histocompatibility complex class I restricting simian immunodeficiency virus Gag241–249 epitope. Aids, 2008, 22, 993-994.	2.2	11
24	Vaccine-based, long-term, stable control of simian/human immunodeficiency virus 89.6PD replication in rhesus macaques. Journal of General Virology, 2007, 88, 652-659.	2.9	7
25	Long-Term Control of Simian Immunodeficiency Virus Replication with Central Memory CD4 + T-Cell Preservation after Nonsterile Protection by a Cytotoxic T-Lymphocyte-Based Vaccine. Journal of Virology, 2007, 81, 5202-5211.	3.4	53
26	Induction of CD8 ⁺ Cells Able To Suppress CCR5-Tropic Simian Immunodeficiency Virus SIVmac239 Replication by Controlled Infection of CXCR4-Tropic Simian-Human Immunodeficiency Virus in Vaccinated Rhesus Macaques. Journal of Virology, 2007, 81, 11640-11649.	3.4	28
27	Involvement of Multiple Epitope-Specific Cytotoxic T-Lymphocyte Responses in Vaccine-Based Control of Simian Immunodeficiency Virus Replication in Rhesus Macaques. Journal of Virology, 2006, 80, 1949-1958.	3.4	60