
Maria D Mayan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5176728/publications.pdf Version: 2024-02-01

Μαρία Ο Μανανι

#	Article	IF	CITATIONS
1	Osteoarthritis: Mechanistic Insights, Senescence, and Novel Therapeutic Opportunities. Bioelectricity, 2022, 4, 39-47.	1.1	1
2	Connexin 43 Expression in Cutaneous Biopsies of Lupus Erythematosus. American Journal of Dermatopathology, 2022, Publish Ahead of Print, .	0.6	1
3	Expression of connexin 43 by atypical fibroxanthoma. Journal of Cutaneous Pathology, 2021, 48, 247-254.	1.3	3
4	Expression of Connexin 43 in 32 Cases of Merkel Cell Carcinoma. American Journal of Dermatopathology, 2020, 42, 178-185.	0.6	3
5	Emerging functions and clinical prospects of connexins and pannexins in melanoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188380.	7.4	14
6	New Therapeutic Strategies for Osteoarthritis by Targeting Sialic Acid Receptors. Biomolecules, 2020, 10, 637.	4.0	15
7	Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging, 2020, 12, 15882-15905.	3.1	29
8	COST Actions: fostering collaborative research for rare diseases. Lancet Neurology, The, 2019, 18, 989-991.	10.2	2
9	Connexin43-positive exosomes from osteoarthritic chondrocytes spread senescence and inflammatory mediators to nearby synovial and bone cells. Osteoarthritis and Cartilage, 2019, 27, S91.	1.3	1
10	Connexins in cancer: bridging the gap to the clinic. Oncogene, 2019, 38, 4429-4451.	5.9	130
11	FRI0529â€SPREAD OF SENESCENCE AND JOINT INFLAMMATION VIA CONNEXIN43-POSITIVE EXOSOMES RELEASED BY OSTEOARTHRITIC CHONDROCYTES. , 2019, , .		1
12	Expression of Connexin 43 (Cx43) in Benign Cutaneous Tumors With Follicular Differentiation. American Journal of Dermatopathology, 2019, 41, 810-818.	0.6	3
13	Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Research Reviews, 2018, 42, 56-71.	10.9	150
14	Expression of connexin 43 in the human hair follicle: emphasis on the connexin 43 protein levels in the bulge and through the keratinization process. Journal of Cutaneous Pathology, 2018, 45, 8-15.	1.3	14
15	Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death and Disease, 2018, 9, 1166.	6.3	67
16	Intercellular communication via gap junction channels between chondrocytes and bone cells. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2499-2505.	2.6	22
17	Recruitment of RNA molecules by connexin RNA-binding motifs: Implication in RNA and DNA transport through microvesicles and exosomes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 728-736.	4.1	45
18	Deletion of the C-terminal domain of connexin 43 results in alterations in normal chondrocyte phenotype and cartilage formation. Osteoarthritis and Cartilage, 2016, 24, S136.	1.3	0

MARIA D MAYAN

#	Article	IF	CITATIONS
19	Olive-derived oleuropein as a potential treatment for bone and cartilage age-related disorders. Osteoarthritis and Cartilage, 2016, 24, S403-S404.	1.3	0
20	Conexinas y panexinas como nuevas dianas en el diagnóstico y la terapéutica dermatológica. Piel, 2016, 31, 254-262.	0.0	0
21	The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes. Oncotarget, 2016, 7, 73055-73067.	1.8	23
22	Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis. Molecular and Cellular Proteomics, 2015, 14, 1831-1845.	3.8	35
23	E2F1-Mediated FOS Induction in Arsenic Trioxide–Induced Cellular Transformation: Effects of Global H3K9 Hypoacetylation and Promoter-Specific Hyperacetylation in Vitro. Environmental Health Perspectives, 2015, 123, 484-492.	6.0	11
24	Cell -to-cell communication via gap junctions between cartilage, synovial membrane and subchondral bone: implications for joint homeostasis. Osteoarthritis and Cartilage, 2015, 23, A65.	1.3	0
25	The regulatory role of the C-terminal domain of connexin 43 in articular cartilage. Osteoarthritis and Cartilage, 2015, 23, A158-A159.	1.3	0
26	Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis. Annals of the Rheumatic Diseases, 2015, 74, 275-284.	0.9	65
27	Ancient Chinese medicine based on a lectin (MASL), that targets glycoproteins containing alpha-2-3-sialic acid residues, decreases proinflammatory mediators production and extracellular matrix degradation response in articular cartilage. Osteoarthritis and Cartilage, 2014, 22, S371.	1.3	0
28	Biochemical evidence for gap junctions and Cx43 expression in immortalized human chondrocyte cell line: a potential model in the study of cell communication in human chondrocytes. Osteoarthritis and Cartilage, 2014, 22, 586-590.	1.3	16
29	Chromosome Conformation Capture (3C) of Tandem Arrays in Yeast. Methods in Molecular Biology, 2014, 1205, 219-229.	0.9	1
30	Stalled RNAPâ€II molecules bound to nonâ€coding rDNA spacers are required for normal nucleolus architecture. Yeast, 2013, 30, 267-277.	1.7	1
31	<i>RNAPâ€I</i> transcribes two small RNAs at the promoter and terminator regions of the <i>RNAPâ€I</i> gene in <i>Saccharomyces cerevisiae</i> . Yeast, 2013, 30, 25-32.	1.7	5
32	Articular chondrocytes are physically connected through a cellular network that is responsible of the metabolic coupling between chondrocytes located in different layers of the tissue. Osteoarthritis and Cartilage, 2013, 21, S18-S19.	1.3	3
33	Human Articular Chondrocytes Express Multiple Gap Junction Proteins. American Journal of Pathology, 2013, 182, 1337-1346.	3.8	61
34	RNAP-II Molecules Participate in the Anchoring of the ORC to rDNA Replication Origins. PLoS ONE, 2013, 8, e53405.	2.5	7
35	Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nature Cell Biology, 2011, 13, 1450-1456.	10.3	67
36	Drugâ€Induced Permeabilization of S. cerevisiae. Current Protocols in Molecular Biology, 2010, 92, Unit 13.28.	2.9	4

MARIA D MAYAN

#	Article	IF	CITATIONS
37	Cis-interactions between non-coding ribosomal spacers dependent on RNAP-II separate RNAP-I and RNAP-III transcription domains. Cell Cycle, 2010, 9, 4328-4337.	2.6	34
38	Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature, 2009, 458, 219-222.	27.8	115
39	A redundancy of processes that cause replication fork stalling enhances recombination at two distinct sites in yeast rDNA. Molecular Microbiology, 2008, 69, 361-375.	2.5	8
40	DNA is more negatively supercoiled in bacterial plasmids than in minichromosomes isolated from budding yeast. Electrophoresis, 2007, 28, 3845-3853.	2.4	11
41	Plasma Albumin Concentration Is a Predictor of HbA1c Among Type 2 Diabetic Patients, Independently of Fasting Plasma Glucose and Fructosamine. Diabetes Care, 2005, 28, 437-439.	8.6	33