Anthony A Chariton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5176441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecotoxicological effects of decommissioning offshore petroleum infrastructure: A systematic review. Critical Reviews in Environmental Science and Technology, 2022, 52, 3283-3321.	12.8	19
2	Characterizing the spatial distributions of soil biota at a legacy base metal mine using environmental DNA. Chemosphere, 2022, 286, 131899.	8.2	5
3	Can eDNA be an indicator of tree groundwater use? A perspective. Marine and Freshwater Research, 2022, , NULL.	1.3	1
4	Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Molecular Ecology, 2021, 30, 2937-2958.	3.9	149
5	Extent and effect of the 2019-20 Australian bushfires on upland peat swamps in the Blue Mountains, NSW. International Journal of Wildland Fire, 2021, 30, 294.	2.4	9
6	Comparison of an extracellular v. total DNA extraction approach for environmental DNA-based monitoring of sediment biota. Marine and Freshwater Research, 2021, , .	1.3	8
7	A Cause for Alarm: Increasing Translocation Success of Captive Individuals Through Alarm Communication. Frontiers in Conservation Science, 2021, 2, .	1.9	4
8	A weight-of-evidence approach for identifying potential sources of untreated sewage inputs into a complex urbanized catchment. Environmental Pollution, 2021, 275, 116575.	7.5	6
9	Metabarcoding Reveals Changes in Benthic Eukaryote and Prokaryote Community Composition along a Tropical Marine Sediment Nickel Gradient. Environmental Toxicology and Chemistry, 2021, 40, 1892-1905.	4.3	7
10	The use of diversity indices for local assessment of marine sediment quality. Scientific Reports, 2021, 11, 14991.	3.3	3
11	Application of environmental DNA for assessment of contamination downstream of a legacy base metal mine. Journal of Hazardous Materials, 2021, 416, 125794.	12.4	4
12	Towards reproducible metabarcoding data: Lessons from an international crossâ€laboratory experiment. Molecular Ecology Resources, 2021, , .	4.8	25
13	Saline mine-water alters the structure and function of prokaryote communities in shallow groundwater below a tropical stream. Environmental Pollution, 2021, 284, 117318.	7.5	8
14	Impact assessment of ephemeral discharge of contamination downstream of two legacy base metal mines using environmental DNA. Journal of Hazardous Materials, 2021, 419, 126483.	12.4	7
15	Social Barriers in Ecological Landscapes: The Social Resistance Hypothesis. Trends in Ecology and Evolution, 2020, 35, 137-148.	8.7	52
16	Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Scientific Reports, 2020, 10, 8365.	3.3	66
17	Mainstreaming Microbes across Biomes. BioScience, 2020, 70, 589-596.	4.9	11
18	Horizon Scan of the Belt and Road Initiative. Trends in Ecology and Evolution, 2020, 35, 583-593.	8.7	70

ANTHONY A CHARITON

#	Article	IF	CITATIONS
19	Using Bayesian networks to predict risk to estuary water quality and patterns of benthic environmental DNA in Queensland. Integrated Environmental Assessment and Management, 2019, 15, 93-111.	2.9	29
20	The effect of dissolved nickel and copper on the adult coral Acropora muricata and its microbiome. Environmental Pollution, 2019, 250, 792-806.	7.5	25
21	DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 2019, 28, 1857-1862.	3.9	300
22	Connectivity of the seagrass Zostera muelleri within south-eastern Australia. Marine and Freshwater Research, 2019, 70, 1056.	1.3	1
23	Towards a general framework for the assessment of interactive effects of multiple stressors on aquatic ecosystems: Results from the Making Aquatic Ecosystems Great Again (MAEGA) workshop. Science of the Total Environment, 2019, 684, 722-726.	8.0	22
24	After decades of stressor research in urban estuarine ecosystems the focus is still on single stressors: A systematic literature review and meta-analysis. Science of the Total Environment, 2019, 684, 753-764.	8.0	50
25	Microbial communities are sensitive indicators for freshwater sediment copper contamination. Environmental Pollution, 2019, 247, 1028-1038.	7.5	38
26	Trophic transfer of metals in a seagrass food web: Bioaccumulation of essential and non-essential metals. Marine Pollution Bulletin, 2018, 131, 468-480.	5.0	32
27	Bacteria in tropical floodplain soils are sensitive to changes in saltwater. Marine and Freshwater Research, 2018, 69, 1110.	1.3	7
28	Effects of micronized and nano opper azole on marine benthic communities. Environmental Toxicology and Chemistry, 2018, 37, 362-375.	4.3	17
29	Insights from the Cenomes of Microbes Thriving in Uranium-Enriched Sediments. Microbial Ecology, 2018, 75, 970-984.	2.8	17
30	Kakadu's wetlands: more change is afoot. Marine and Freshwater Research, 2018, 69, iii.	1.3	1
31	Sea-level rise in northern Australia's Kakadu National Park: a survey of floodplain eukaryotes. Marine and Freshwater Research, 2018, 69, 1134.	1.3	2
32	An integrated risk-assessment framework for multiple threats to floodplain values in the Kakadu Region, Australia, under a changing climate. Marine and Freshwater Research, 2018, 69, 1159.	1.3	13
33	Diverse fungal lineages in subtropical ponds are altered by sediment-bound copper. Fungal Ecology, 2018, 34, 28-42.	1.6	26
34	Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems. Scientific Reports, 2017, 7, 40702.	3.3	74
35	Effects of uranium concentration on microbial community structure and functional potential. Environmental Microbiology, 2017, 19, 3323-3341.	3.8	38
36	Global Change. , 2016, , 273-313.		14

ANTHONY A CHARITON

#	Article	IF	CITATIONS
37	Germination and early-stage development in the seagrass, Zostera muelleri Irmisch ex Asch. in response to multiple stressors. Aquatic Botany, 2016, 128, 18-25.	1.6	16
38	Emergent technologies and analytical approaches for understanding the effects of multiple stressors in aquatic environments. Marine and Freshwater Research, 2016, 67, 414.	1.3	41
39	New diagnostics for multiply stressed marine and freshwater ecosystems: integrating models, ecoinformatics and big data. Marine and Freshwater Research, 2016, 67, 391.	1.3	23
40	Prolonged buoyancy and viability of Zostera muelleri Irmisch ex Asch. vegetative fragments indicate a strong dispersal potential. Journal of Experimental Marine Biology and Ecology, 2015, 464, 52-57.	1.5	21
41	Modeling food web structure and selenium biomagnification in lake macquarie, New South Wales, Australia, using stable carbon and nitrogen isotopes. Environmental Toxicology and Chemistry, 2015, 34, 608-617.	4.3	19
42	Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries. Environmental Pollution, 2015, 203, 165-174.	7.5	125
43	Time-averaged copper concentrations from continuous exposures predicts pulsed exposure toxicity to the marine diatom, Phaeodactylum tricornutum: Importance of uptake and elimination. Aquatic Toxicology, 2015, 164, 1-9.	4.0	29
44	History of metal contamination in Lake Illawarra, NSW, Australia. Chemosphere, 2015, 119, 377-386.	8.2	13
45	Use of a multi-proxy method to support the restoration of estuaries receiving inputs from industry. Ecological Engineering, 2015, 85, 247-256.	3.6	3
46	Saltwater intrusion history shapes the response of bacterial communities upon rehydration. Science of the Total Environment, 2015, 502, 143-148.	8.0	19
47	Direct and indirect effects of copper-contaminated sediments on the functions of model freshwater ecosystems. Ecotoxicology, 2015, 24, 61-70.	2.4	17
48	DNA Metabarcoding Meets Experimental Ecotoxicology. Advances in Ecological Research, 2014, 51, 79-104.	2.7	31
49	Faster, Higher and Stronger? The Pros and Cons of Molecular Faunal Data for Assessing Ecosystem Condition. Advances in Ecological Research, 2014, 51, 1-40.	2.7	30
50	Invertebrate community responses to a particulate―and dissolvedâ€copper exposure in model freshwater ecosystems. Environmental Toxicology and Chemistry, 2014, 33, 2724-2732.	4.3	11
51	A molecularâ€based approach for examining responses of eukaryotes in microcosms to contaminantâ€spiked estuarine sediments. Environmental Toxicology and Chemistry, 2014, 33, 359-369.	4.3	48
52	Long-term copper partitioning of metal-spiked sediments used in outdoor mesocosms. Environmental Science and Pollution Research, 2014, 21, 7130-7139.	5.3	15
53	Recent history of sediment metal contamination in Lake Macquarie, Australia, and an assessment of ash handling procedure effectiveness in mitigating metal contamination from coal-fired power stations. Science of the Total Environment, 2014, 490, 659-670.	8.0	30
54	Impacts of inundation and drought on eukaryote biodiversity in semiâ€∎rid floodplain soils. Molecular Ecology, 2013, 22, 1746-1758.	3.9	54

ANTHONY A CHARITON

#	Article	IF	CITATIONS
55	Use of a novel sediment exposure to determine the effects of triclosan on estuarine benthic communities. Environmental Toxicology and Chemistry, 2013, 32, 384-392.	4.3	18
56	Improved Inference of Taxonomic Richness from Environmental DNA. PLoS ONE, 2013, 8, e71974.	2.5	33
57	Changes in Prokaryote and Eukaryote Assemblages Along a Gradient of Hydrocarbon Contamination in Groundwater. Geomicrobiology Journal, 2013, 30, 623-634.	2.0	15
58	A Classification of Floodplains and Wetlands of the Murray-Darling Basin Based on Changes in Flows Following Water Resource Development. Wetlands, 2012, 32, 239-248.	1.5	27
59	Short and informative DNA products to indirectly measure vascular plant biodiversity. Molecular Ecology, 2012, 21, 3637-3639.	3.9	3
60	Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia. Environmental Chemistry, 2011, 8, 9.	1.5	42
61	Recolonisation of translocated metal-contaminated sediments by estuarine macrobenthic assemblages. Ecotoxicology, 2011, 20, 706-718.	2.4	16
62	Spatial variability of cadmium, copper, manganese, nickel and zinc in the Port Curtis Estuary, Queensland, Australia. Marine and Freshwater Research, 2010, 61, 170.	1.3	28
63	Improving aquatic ecological assessments. Integrated Environmental Assessment and Management, 2010, 6, 187-188.	2.9	8
64	Influence of the choice of physical and chemistry variables on interpreting patterns of sediment contaminants and their relationships with estuarine macrobenthic communities. Marine and Freshwater Research, 2010, 61, 1109.	1.3	46
65	Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Frontiers in Ecology and the Environment, 2010, 8, 233-238.	4.0	161
66	Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia. Applied Organometallic Chemistry, 2002, 16, 192-201.	3.5	59
67	What happens to groundwater ecosystems when you take out the groundwater?. ARPHA Conference Abstracts, 0, 1, .	0.0	Ο
68	Biotic distribution within groundwater- is it really unpredictable?. ARPHA Conference Abstracts, 0, 1, .	0.0	0