Claudia Nunes dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5176376/publications.pdf Version: 2024-02-01

		66234	16127
130	16,116	42	124
papers	citations	h-index	g-index
132	132	132	27126
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	A standardised static <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2014, 5, 1113-1124.	2.1	3,730
3	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
4	Isoquercitrin: Pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, 2014, 68, 267-282.	1.8	317
5	<i>In Vitro</i> Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 413-436.	5.9	260
6	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	3.9	242
7	The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 2007, 8, 677-700.	2.0	217
8	Mind the gap—deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites—a position paper focusing on carotenoids and polyphenols. Molecular Nutrition and Food Research, 2015, 59, 1307-1323.	1.5	204
9	Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget, 2015, 6, 13858-13898.	0.8	195
10	The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 2016, 88, 217-225.	2.9	180
11	Polyphenols journey through blood-brain barrier towards neuronal protection. Scientific Reports, 2017, 7, 11456.	1.6	177
12	Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 714-731.	5.9	160
13	Dairy products and inflammation: A review of the clinical evidence. Critical Reviews in Food Science and Nutrition, 2017, 57, 2497-2525.	5.4	149
14	"Sweet Flavonoids― Glycosidase-Catalyzed Modifications. International Journal of Molecular Sciences, 2018, 19, 2126.	1.8	133
15	Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Archives of Biochemistry and Biophysics, 2016, 599, 31-41.	1.4	123
16	Phosphorylation Modulates Clearance of Alpha-Synuclein Inclusions in a Yeast Model of Parkinson's Disease. PLoS Genetics, 2014, 10, e1004302.	1.5	114
17	The silymarin composition \hat{e}_{i}^{\dagger} and why does it matter???. Food Research International, 2017, 100, 339-353.	2.9	107
18	Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. British Journal of Nutrition, 2015, 113, 454-463.	1.2	105

#	Article	IF	CITATIONS
19	Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chemistry, 2012, 131, 1443-1452.	4.2	101
20	Biosafety, Antioxidant Status, and Metabolites in Urine after Consumption of Dried Cranberry Juice in Healthy Women:Â A Pilot Double-Blind Placebo-Controlled Trial. Journal of Agricultural and Food Chemistry, 2007, 55, 3217-3224.	2.4	98
21	Cranberry (poly)phenol metabolites correlate with improvements in vascular function: A doubleâ€blind, randomized, controlled, doseâ€response, crossover study. Molecular Nutrition and Food Research, 2016, 60, 2130-2140.	1.5	97
22	Antioxidant Properties and Neuroprotective Capacity of Strawberry Tree Fruit (Arbutus unedo). Nutrients, 2010, 2, 214-229.	1.7	87
23	Polyphenols Beyond Barriers: A Glimpse into the Brain. Current Neuropharmacology, 2017, 15, 562-594.	1.4	87
24	Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews, 2021, 171, 289-331.	6.6	84
25	Galloylation of polyphenols alters their biological activity. Food and Chemical Toxicology, 2017, 105, 223-240.	1.8	77
26	Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Molecular Nutrition and Food Research, 2014, 58, 1414-1425.	1.5	72
27	Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radical Biology and Medicine, 2016, 90, 114-125.	1.3	72
28	Neuroprotective effects of digested polyphenols from wild blackberry species. European Journal of Nutrition, 2013, 52, 225-236.	1.8	68
29	Fungal Pathogens: The Battle for Plant Infection. Critical Reviews in Plant Sciences, 2006, 25, 505-524.	2.7	66
30	(Poly)phenols protect from α-synuclein toxicity by reducing oxidative stress and promoting autophagy. Human Molecular Genetics, 2015, 24, 1717-1732.	1.4	66
31	Antioxidant activity of extracts from the leaves of Smallanthus sonchifolius. European Journal of Nutrition, 2003, 42, 61-66.	1.8	62
32	Low-Molecular Weight Metabolites from Polyphenols as Effectors for Attenuating Neuroinflammation. Journal of Agricultural and Food Chemistry, 2020, 68, 1790-1807.	2.4	60
33	From the baker to the bedside: yeast models of Parkinson's disease. Microbial Cell, 2015, 2, 262-279.	1.4	59
34	Maca (Lepidium meyenii) and yacon (Smallanthus sonchifolius) in combination with silymarin as food supplements: In vivo safety assessment. Food and Chemical Toxicology, 2008, 46, 1006-1013.	1.8	57
35	The Biological and Chemical Variability of Yacon. Journal of Agricultural and Food Chemistry, 2006, 54, 1347-1352.	2.4	55
36	Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma. BMC Research Notes, 2011, 4, 3.	0.6	55

#	Article	IF	CITATIONS
37	Worldwide (poly)phenol intake: assessment methods and identified gaps. European Journal of Nutrition, 2017, 56, 1393-1408.	1.8	55
38	5-(Hydroxyphenyl)-Î ³ -Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-ols, Is Able to Reach the Brain: Evidence from Different in Silico, In Vitro and In Vivo Experimental Models. Nutrients, 2019, 11, 2678.	1.7	55
39	Analysis of Phenolic Compounds in Portuguese Wild and Commercial Berries after Multienzyme Hydrolysis. Journal of Agricultural and Food Chemistry, 2013, 61, 4053-4062.	2.4	54
40	Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation. Food Chemistry, 2017, 215, 274-283.	4.2	52
41	Radical Scavenging and Anti-Lipoperoxidative Activities ofSmallanthus sonchifoliusLeaf Extracts. Journal of Agricultural and Food Chemistry, 2005, 53, 5577-5582.	2.4	50
42	Seed Proteins ofLupinus mutabilis. Journal of Agricultural and Food Chemistry, 1997, 45, 3821-3825.	2.4	46
43	Defying Multidrug Resistance! Modulation of Related Transporters by Flavonoids and Flavonolignans. Journal of Agricultural and Food Chemistry, 2020, 68, 1763-1779.	2.4	46
44	Contribution of Yap1 towards <i>Saccharomyces cerevisiae</i> adaptation to arsenic-mediated oxidative stress. Biochemical Journal, 2008, 414, 301-311.	1.7	44
45	Antioxidant Capacity of Macaronesian Traditional Medicinal Plants. Molecules, 2010, 15, 2576-2592.	1.7	43
46	Dietary Polyphenols Targeting Arterial Stiffness: Interplay of Contributing Mechanisms and Gut Microbiome-Related Metabolism. Nutrients, 2019, 11, 578.	1.7	43
47	Sesquiterpene Lactones: Promising Natural Compounds to Fight Inflammation. Pharmaceutics, 2021, 13, 991.	2.0	43
48	Antioxidant and antiproliferative properties of strawberry tree tissues. Journal of Berry Research, 2010, 1, 3-12.	0.7	39
49	Silychristin: Skeletal Alterations and Biological Activities. Journal of Natural Products, 2016, 79, 3086-3092.	1.5	38
50	Brain uptake of hydroxytyrosol and its main circulating metabolites: Protective potential in neuronal cells. Journal of Functional Foods, 2018, 46, 110-117.	1.6	38
51	Blood–brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study. European Journal of Nutrition, 2019, 58, 113-130.	1.8	37
52	Analysis of phenolic acids in plant materials using HPLC with amperometric detection at a platinum tubular electrode. Journal of Separation Science, 2003, 26, 739-742.	1.3	36
53	Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology, 2017, 18, 3-34.	2.0	36
54	Combined effect of interventions with pure or enriched mixtures of (poly)phenols and anti-diabetic medication in type 2 diabetes management: a meta-analysis of randomized controlled human trials. European Journal of Nutrition, 2020, 59, 1329-1343.	1.8	36

#	Article	IF	CITATIONS
55	Protective Effect of a (Poly)phenol-Rich Extract Derived from Sweet Cherries Culls against Oxidative Cell Damage. Molecules, 2016, 21, 406.	1.7	35
56	The neuroprotective potential of phenolic-enriched fractions from four Juniperus species found in Portugal. Food Chemistry, 2012, 135, 562-570.	4.2	30
57	Low Molecular Weight (poly)Phenol Metabolites Across the Blood-Brain Barrier: The Underexplored Journey. Brain Plasticity, 2021, 6, 193-214.	1.9	29
58	Silibinin and its 2,3â€dehydroâ€derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Molecular Carcinogenesis, 2016, 55, 3-14.	1.3	28
59	Identification and Microbial Production of the Raspberry Phenol Salidroside that Is Active against Huntington's Disease. Plant Physiology, 2019, 179, 969-985.	2.3	28
60	(Anti)mutagenic and immunomodulatory properties of quercetin glycosides. Journal of the Science of Food and Agriculture, 2016, 96, 1492-1499.	1.7	27
61	RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genomics, 2019, 20, 995.	1.2	27
62	Enzymatic oxidative dimerization of silymarin flavonolignans. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 24-30.	1.8	26
63	Induction of Glucokinase mRNA by Dietary Phenolic Compounds in Rat Liver Cells in Vitro. Journal of Agricultural and Food Chemistry, 2007, 55, 7726-7731.	2.4	25
64	Novel flavonolignan hybrid antioxidants: From enzymatic preparation to molecular rationalization. European Journal of Medicinal Chemistry, 2017, 127, 263-274.	2.6	25
65	Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1977-1986.	1.1	24
66	Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties. International Journal of Molecular Sciences, 2018, 19, 2349.	1.8	23
67	Antioxidant, Anti-Inflammatory, and Multidrug Resistance Modulation Activity of Silychristin Derivatives. Antioxidants, 2019, 8, 303.	2.2	23
68	Biosafety and antioxidant effects of a beverage containing silymarin and arginine. A pilot, human intervention cross-over trial. Food and Chemical Toxicology, 2013, 56, 178-183.	1.8	22
69	Prokaryotic and Eukaryotic Aryl Sulfotransferases: Sulfation of Quercetin and Its Derivatives. ChemCatChem, 2015, 7, 3152-3162.	1.8	22
70	Berry-Enriched Diet in Salt-Sensitive Hypertensive Rats: Metabolic Fate of (Poly)Phenols and the Role of Gut Microbiota. Nutrients, 2019, 11, 2634.	1.7	22
71	Biotransformation of Silymarin Flavonolignans by Human Fecal Microbiota. Metabolites, 2020, 10, 29.	1.3	22
72	Chicory Extracts and Sesquiterpene Lactones Show Potent Activity against Bacterial and Fungal Pathogens. Pharmaceuticals, 2021, 14, 941.	1.7	22

#	Article	IF	CITATIONS
73	Chemo-Enzymatic Synthesis of Silybin and 2,3-Dehydrosilybin Dimers. Molecules, 2014, 19, 4115-4134.	1.7	21
74	Exposure of Lemna minor to Arsenite: Expression Levels of the Components and Intermediates of the Ubiquitin/Proteasome Pathway. Plant and Cell Physiology, 2006, 47, 1262-1273.	1.5	20
75	(Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Scientific Reports, 2018, 8, 6965.	1.6	20
76	Massive dissemination of a SARS-CoV-2 Spike Y839 variant in Portugal. Emerging Microbes and Infections, 2020, 9, 2488-2496.	3.0	20
77	The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions. Nutrients, 2017, 9, 1193.	1.7	19
78	Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients, 2021, 13, 2940.	1.7	19
79	Chemical characterization and bioactivity of phytochemicals from Iberian endemic Santolina semidentata and strategies for ex situ propagation. Industrial Crops and Products, 2015, 74, 505-513.	2.5	18
80	(Poly)phenol metabolites from Arbutus unedo leaves protect yeast from oxidative injury by activation of antioxidant and protein clearance pathways. Journal of Functional Foods, 2017, 32, 333-346.	1.6	17
81	Phytochemical Composition and Cytotoxic Effects on Liver Hepatocellular Carcinoma Cells of Different Berries Following a Simulated In Vitro Gastrointestinal Digestion. Molecules, 2018, 23, 1918.	1.7	17
82	Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties. International Journal of Molecular Sciences, 2016, 17, 899.	1.8	16
83	Bioactive compounds from endemic plants of Southwest Portugal: Inhibition of acetylcholinesterase and radical scavenging activities. Pharmaceutical Biology, 2012, 50, 239-246.	1.3	15
84	Synthesis and Antiradical Activity of Isoquercitrin Esters with Aromatic Acids and Their Homologues. International Journal of Molecular Sciences, 2017, 18, 1074.	1.8	15
85	Bioaccessible Raspberry Extracts Enriched in Ellagitannins and Ellagic Acid Derivatives Have Anti-Neuroinflammatory Properties. Antioxidants, 2020, 9, 970.	2.2	15
86	Assessing the Intestinal Permeability and Anti-Inflammatory Potential of Sesquiterpene Lactones from Chicory. Nutrients, 2020, 12, 3547.	1.7	15
87	Pure Polyphenols Applications for Cardiac Health and Disease. Current Pharmaceutical Design, 2018, 24, 2137-2156.	0.9	15
88	Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods, 2022, 11, 1060.	1.9	15
89	Urolithins: Diet-Derived Bioavailable Metabolites to Tackle Diabetes. Nutrients, 2021, 13, 4285.	1.7	14
90	Effects of 2,3-Dehydrosilybin and Its Galloyl Ester and Methyl Ether Derivatives on Human Umbilical Vein Endothelial Cells. Journal of Natural Products, 2016, 79, 812-820.	1.5	13

#	Article	IF	CITATIONS
91	Synthesis of New Sulfated and Glucuronated Metabolites of Dietary Phenolic Compounds Identified in Human Biological Samples. Journal of Agricultural and Food Chemistry, 2017, 65, 6460-6466.	2.4	13
92	Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food and Function, 2020, 11, 5040-5064.	2.1	13
93	BacHBerry: BACterial Hosts for production of Bioactive phenolics from bERRY fruits. Phytochemistry Reviews, 2018, 17, 291-326.	3.1	12
94	CSRP3 mediates polyphenols-induced cardioprotection in hypertension. Journal of Nutritional Biochemistry, 2019, 66, 29-42.	1.9	12
95	Supercritical CO2 Extraction as a Tool to Isolate Anti-Inflammatory Sesquiterpene Lactones from Cichorium intybus L. Roots. Molecules, 2021, 26, 2583.	1.7	12
96	Small Molecule Fisetin Modulates Alpha–Synuclein Aggregation. Molecules, 2021, 26, 3353.	1.7	12
97	Smallanthus sonchifolius and Lepidium meyenii - prospective Andean crops for the prevention of chronic diseases. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2003, 147, 119-30.	0.2	12
98	Daily polyphenol intake from fresh fruits in Portugal: contribution from berry fruits. International Journal of Food Sciences and Nutrition, 2013, 64, 1022-1029.	1.3	10
99	Inhibition of Yap2 activity by MAPKAP kinase Rck1 affects yeast tolerance to cadmium. FEBS Letters, 2015, 589, 2841-2849.	1.3	10
100	Flavonoids as Potential Drugs for VPS13-Dependent Rare Neurodegenerative Diseases. Genes, 2020, 11, 828.	1.0	10
101	Evaluation of potential of gamma radiation as a conservation treatment for blackberry fruits. Journal of Berry Research, 2013, 3, 93-102.	0.7	9
102	Phycocyanin protects against Alpha-Synuclein toxicity in yeast. Journal of Functional Foods, 2017, 38, 553-560.	1.6	9
103	Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases. Antioxidants, 2020, 9, 789.	2.2	9
104	Elucidating Phytochemical Production in Juniperus sp.: Seasonality and Response to Stress Situations. Journal of Agricultural and Food Chemistry, 2013, 61, 4044-4052.	2.4	8
105	Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radical Biology and Medicine, 2020, 154, 119-131.	1.3	8
106	Circulating (Poly)phenol Metabolites: Neuroprotection in a 3D Cell Model of Parkinson's Disease. Molecular Nutrition and Food Research, 2022, 66, e2100959.	1.5	8
107	Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation. Antioxidants, 2013, 2, 273-292.	2.2	7
108	Cranberry extract–enriched diets increase NAD(P)H:quinone oxidoreductase and catalase activities in obese but not in nonobese mice. Nutrition Research, 2015, 35, 901-909.	1.3	7

#	Article	IF	CITATIONS
109	Chemoenzymatic Synthesis and Radical Scavenging of Sulfated Hydroxytyrosol, Tyrosol, and Acetylated Derivatives. Journal of Agricultural and Food Chemistry, 2019, 67, 7281-7288.	2.4	7
110	Phenolic Metabolites Modulate Cardiomyocyte Beating in Response to Isoproterenol. Cardiovascular Toxicology, 2019, 19, 156-167.	1.1	7
111	Polyphenols, their Metabolites and Derivatives as Drug Leads. Current Pharmaceutical Design, 2018, 24, 2188-2207.	0.9	7
112	Polyphenols as New Leads in Drug Discovery: Biological Activity and Mechanisms. Current Pharmaceutical Design, 2018, 24, 2041-2042.	0.9	6
113	Missing pieces in protein deposition and mobilization inside legume seed storage vacuoles: calcium and magnesium ions. Seed Science Research, 2012, 22, 249-258.	0.8	5
114	Personalized nutrition in ageing society: redox control of major-age related diseases through the NutRedOx Network (COST Action CA16112). Free Radical Research, 2019, 53, 1163-1170.	1.5	5
115	A Dietary Cholesterol-Based Intestinal Inflammation Assay for Improving Drug-Discovery on Inflammatory Bowel Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 674749.	1.8	5
116	β-N-Acetylhexosaminidase involvement in α-conglutin mobilization in Lupinus albus. Journal of Plant Physiology, 2013, 170, 1047-1056.	1.6	4
117	Carbon monoxide released by CORM-A1 prevents yeast cell death via autophagy stimulation. FEMS Yeast Research, 2019, 19, .	1.1	4
118	Natural Products: Optimizing Cancer Treatment through Modulation of Redox Balance. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-3.	1.9	4
119	Continuous Diastereomeric Kinetic Resolution—Silybins A and B. Catalysts, 2021, 11, 1106.	1.6	4
120	Heterologous Expression of Immature Forms of Human Islet Amyloid Polypeptide in Yeast Triggers Intracellular Aggregation and Cytotoxicity. Frontiers in Microbiology, 2020, 11, 2035.	1.5	3
121	Polyphenol Metabolite Pyrogallol-O-Sulfate Decreases Microglial Activation and VEGF in Retinal Pigment Epithelium Cells and Diabetic Mouse Retina. International Journal of Molecular Sciences, 2021, 22, 11402.	1.8	3
122	The synthetic cannabinoid JWH-018 modulates Saccharomyces cerevisiae energetic metabolism. FEMS Yeast Research, 2019, 19, .	1.1	2
123	Protective Effects of Dietary Polyphenols on Arterial Stiffness. Proceedings (mdpi), 2019, 11, .	0.2	1
124	Combination of plant phenolics and isoquinolinium alkaloids protects gingival fibroblast and improves post-extraction healing after lower third molar extraction. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2023, 167, 131-138.	0.2	1
125	0281 : Protection of berries polyphenols in response to cardiac stress might involve other mechanisms than a mitochondrial direct action. Archives of Cardiovascular Diseases Supplements, 2016, 8, 208-209.	0.0	0
126	Low molecular weight gut polyphenols metabolites and its nutritional relevance as effectors for attenuating neuroinflammation. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0

#	Article	IF	CITATIONS
127	Phytochemical characterization of Juniperus spp. leaves. Planta Medica, 2009, 75, .	0.7	0
128	Neuroprotective and MMP-9 inhibitory activity of hydroethanolic extract of Arbustus unedo leaves. Planta Medica, 2009, 75, .	0.7	0
129	Metabolitos de frutas vermelhas para um envelhecimento saudável do cérebro. Revista Brasileira De Ciências Do Envelhecimento Humano, 2015, 12, .	0.0	0
130	Second Food Bioactives and Health Conference. Journal of Agricultural and Food Chemistry, 2020, 68, 1761-1762.	2.4	0