Anoop Singh

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5176180/anoop-singh-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

50	5,271 citations	24	53
papers		h-index	g-index
53 ext. papers	5,737 ext. citations	6.5 avg, IF	6.13 L-index

#	Paper	IF	Citations
50	Genetic Analysis for Resistance to Sclerotinia Stem Rot, Yield and Its Component Traits in Indian Mustard [(L.) Czern & Coss.] <i>Plants</i> , 2022 , 11,	4.5	2
49	Monitoring of airborne heavy metal using plants: Perspective and challenges 2022, 27-44		
48	Renewable Energy for a Low-Carbon Future: Policy Perspectives 2021 , 267-284		11
47	Agricultural Waste Valorization: An Energy Production Perspective. <i>Environmental and Microbial Biotechnology</i> , 2021 , 249-260	1.4	
46	Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. <i>Nanomaterials</i> , 2021 , 11,	5.4	17
45	Genotype-Specific Antioxidant Responses and Assessment of Resistance Against Causing Sclerotinia Rot in Indian Mustard. <i>Pathogens</i> , 2020 , 9,	4.5	6
44	Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. <i>Bioresource Technology</i> , 2020 , 303, 122964	11	72
43	Perspectives of Environmental Microbiology and Biotechnology 2020 , 1-16		
42	Impact of Climate Change on Sustainable Biofuel Production. <i>Biofuel and Biorefinery Technologies</i> , 2020 , 79-97	1	5
41	Development and life cycle assessment of an auto circulating bio-electrochemical reactor for energy positive continuous wastewater treatment. <i>Bioresource Technology</i> , 2020 , 304, 122959	11	7
40	Sustainability of biohydrogen as fuel: Present scenario and future perspective. <i>AIMS Energy</i> , 2019 , 7, 1-19	1.8	18
39	Enhancement of bio-ethanol production potential of wheat straw by reducing furfural and 5-hydroxymethylfurfural (HMF). <i>Bioresource Technology Reports</i> , 2018 , 4, 50-56	4.1	36
38	Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. <i>Bioresource Technology</i> , 2017 , 242, 218-226	11	80
37	Biohydrogen: Next Generation Fuel 2017 , 1-10		3
36	Biohydrogen: Global Trend and Future Perspective 2017 , 291-315		1
35	Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. <i>Biofuel Research Journal</i> , 2016 , 3, 380-393	13.9	102
34	Food and agricultural wastes as substrates for bioelectrochemical system (BES): The synchronized recovery of sustainable energy and waste treatment. <i>Food Research International</i> , 2015 , 73, 213-225	7	107

(2011-2015)

33	Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability. <i>Energies</i> , 2015 , 8, 13062-13080	3.1	84
32	Microbial biofuels production 2014 , 155-168		3
31	Biohydrogen Production from Microalgae 2013 , 317-333		12
30	Importance of Life Cycle Assessment of Renewable Energy Sources. <i>Green Energy and Technology</i> , 2013 , 1-11	0.6	7
29	A Comparison of Life Cycle Assessment Studies of Different Biofuels. <i>Green Energy and Technology</i> , 2013 , 269-289	0.6	4
28	Comparison of Algal Biodiesel Production Pathways Using Life Cycle Assessment Tool. <i>Green Energy and Technology</i> , 2013 , 145-168	0.6	3
27	Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. <i>RSC Advances</i> , 2012 , 2, 1248-1263	3.7	397
26	Impact of fly-ash-amended soil on growth and yield of crop plants. <i>International Journal of Environment and Waste Management</i> , 2012 , 10, 150	0.9	9
25	Key Issues in Life Cycle Assessment of Biofuels. <i>Green Energy and Technology</i> , 2012 , 213-228	0.6	7
24	Influence of prevailing disturbances on soil biology and biochemistry of montane habitats at Nanda Devi Biosphere Reserve (NDBR), India during wet and dry seasons. <i>Geoderma</i> , 2011 , 162, 296-302	6.7	1
23	Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot-scale bioreactor. <i>International Journal of Environment and Waste Management</i> , 2011 , 7, 423	0.9	1
22	Energy and emissions forecast of China over a long-time horizon. <i>Energy</i> , 2011 , 36, 1-11	7.9	101
21	A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. <i>Applied Energy</i> , 2011 , 88, 3548-3555	10.7	352
20	Renewable fuels from algae: an answer to debatable land based fuels. <i>Bioresource Technology</i> , 2011 , 102, 10-6	11	493
19	A viable technology to generate third-generation biofuel. <i>Journal of Chemical Technology and Biotechnology</i> , 2011 , 86, 1349-1353	3.5	80
18	Design, Commissioning, and Start-Up of a Sequentially Fed Leach Bed Reactor Complete with an Upflow Anaerobic Sludge Blanket Digesting Grass Silage. <i>Energy & Energy & Energy</i>	4.1	24
17	Mechanism and challenges in commercialisation of algal biofuels. <i>Bioresource Technology</i> , 2011 , 102, 26-34	11	345
16	Production of liquid biofuels from renewable resources. <i>Progress in Energy and Combustion Science</i> , 2011 , 37, 52-68	33.6	1417

15	An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects. <i>Renewable and Sustainable Energy Reviews</i> , 2011 , 15, 1305-1313	16.2	176
14	The effect of reactor design on the sustainability of grass biomethane. <i>Renewable and Sustainable Energy Reviews</i> , 2011 , 15, 1567-1574	16.2	30
13	Grass Biomethane for Agriculture and Energy. Sustainable Agriculture Reviews, 2011, 5-49	1.3	5
12	Role of Leaching and Hydrolysis in a Two-Phase Grass Digestion System. <i>Energy & Comp. Fuels</i> , 2010 , 24, 4549-4559	4.1	47
11	Impact assessment of pre- and post-sown irrigation with Post Methanation distillery Effluent on soil health and crop yield. <i>International Journal of Environmental Engineering</i> , 2010 , 2, 401	0.2	0
10	Is grass biomethane a sustainable transport biofuel?. <i>Biofuels, Bioproducts and Biorefining</i> , 2010 , 4, 310-	33.5	95
9	A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. <i>Renewable and Sustainable Energy Reviews</i> , 2010 , 14, 277-288	16.2	96
8	Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. <i>Bioresource Technology</i> , 2010 , 101, 5003-12	11	319
7	Effect of carbon and nitrogen source amendment on synthetic dyes decolourizing efficiency of white-rot fungus, Phanerochaete chrysosporium. <i>Journal of Environmental Biology</i> , 2008 , 29, 79-84	1.6	24
6	Ethanol Production from Sweet Sorghum Syrup for Utilization as Automotive Fuel in India. <i>Energy & Emp; Fuels</i> , 2007 , 21, 2415-2420	4.1	158
5	Ethanol as an alternative fuel from agricultural, industrial and urban residues. <i>Resources, Conservation and Recycling</i> , 2007 , 50, 1-39	11.9	426
4	Role of ethylene diurea (EDU) in assessing impact of ozone on Vigna radiata L. plants in a suburban area of Allahabad (India). <i>Chemosphere</i> , 2005 , 61, 218-28	8.4	52
3	Amelioration of Indian urban air pollution phytotoxicity in Beta vulgaris L. by modifying NPK nutrients. <i>Environmental Pollution</i> , 2005 , 134, 385-95	9.3	24
2	Growth responses of wheat (Triticum aestivum L. var. HD 2329) exposed to ambient air pollution under varying fertility regimes. <i>Scientific World Journal, The</i> , 2003 , 3, 799-810	2.2	7
1	Assessment of the pulp and paper mill effluent on growth, yield and nutrient quality of wheat	1.6	4