
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5176177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Rothia mucilaginosa</i> is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease. European Respiratory Journal, 2022, 59, 2101293.	3.1	60
2	Biocompatible antimicrobial colistin loaded calcium phosphate nanoparticles for the counteraction of biofilm formation in cystic fibrosis related infections. Journal of Inorganic Biochemistry, 2022, 230, 111751.	1.5	5
3	NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target. MBio, 2021, 12, .	1.8	7
4	Chronic Pseudomonas aeruginosa Lung Infection Is IL-1R Independent, but Relies on MyD88 Signaling. ImmunoHorizons, 2021, 5, 273-283.	0.8	0
5	Type-4 Phosphodiesterase (PDE4) Blockade Reduces NETosis in Cystic Fibrosis. Frontiers in Pharmacology, 2021, 12, 702677.	1.6	10
6	Chronic infection by nontypeable <i>Haemophilus influenzae</i> fuels airway inflammation. ERJ Open Research, 2021, 7, 00614-2020.	1.1	17
7	Lung and Gut Microbiota Changes Associated with Pseudomonas aeruginosa Infection in Mouse Models of Cystic Fibrosis. International Journal of Molecular Sciences, 2021, 22, 12169.	1.8	7
8	A New Model of Chronic Mycobacterium abscessus Lung Infection in Immunocompetent Mice. International Journal of Molecular Sciences, 2020, 21, 6590.	1.8	14
9	The Small RNA ErsA Plays a Role in the Regulatory Network of Pseudomonas aeruginosa Pathogenicity in Airway Infections. MSphere, 2020, 5, .	1.3	8
10	Liposomes Loaded With Phosphatidylinositol 5-Phosphate Improve the Antimicrobial Response to Pseudomonas aeruginosa in Impaired Macrophages From Cystic Fibrosis Patients and Limit Airway Inflammatory Response. Frontiers in Immunology, 2020, 11, 532225.	2.2	11
11	Collaborative Cross Mice Yield Genetic Modifiers for Pseudomonas aeruginosa Infection in Human Lung Disease. MBio, 2020, 11, .	1.8	17
12	Pharmacological modulation of mitochondrial calcium uniporter controls lung inflammation in cystic fibrosis. Science Advances, 2020, 6, eaax9093.	4.7	39
13	Antibiotic efficacy varies based on the infection model and treatment regimen for <i>Pseudomonas aeruginosa</i> . European Respiratory Journal, 2020, 55, 1802456.	3.1	29
14	Pseudomonas aeruginosa Elastase Contributes to the Establishment of Chronic Lung Colonization and Modulates the Immune Response in a Murine Model. Frontiers in Microbiology, 2020, 11, 620819.	1.5	23
15	Aerosolized Bovine Lactoferrin Counteracts Infection, Inflammation and Iron Dysbalance in A Cystic Fibrosis Mouse Model of Pseudomonas aeruginosa Chronic Lung Infection. International Journal of Molecular Sciences, 2019, 20, 2128.	1.8	51
16	Exploring the effect of chirality on the therapeutic potential of N-alkyl-deoxyiminosugars: anti-inflammatory response to Pseudomonas aeruginosa infections for application in CF lung disease. European Journal of Medicinal Chemistry, 2019, 175, 63-71.	2.6	16
17	Conjugation of LasR Quorum-Sensing Inhibitors with Ciprofloxacin Decreases the Antibiotic Tolerance of <i>P. aeruginosa</i> Clinical Strains. Journal of Chemistry, 2019, 2019, 1-13.	0.9	12
18	Staphylococcus aureus Impacts Pseudomonas aeruginosa Chronic Respiratory Disease in Murine Models. Journal of Infectious Diseases, 2018, 217, 933-942.	1.9	39

#	Article	IF	CITATIONS
19	Platelet Depletion Impairs Host Defense to Pulmonary Infection with <i>Pseudomonas aeruginosa</i> in Mice. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 331-340.	1.4	55
20	Inflammation and host-pathogen interaction: Cause and consequence in cystic fibrosis lung disease. Journal of Cystic Fibrosis, 2018, 17, S40-S45.	0.3	9
21	The impact of host genetic background in the Pseudomonas aeruginosa respiratory infections. Mammalian Genome, 2018, 29, 550-557.	1.0	2
22	Targeting the Bacterial Cytoskeleton of the Burkholderia cepacia Complex for Antimicrobial Development: A Cautionary Tale. International Journal of Molecular Sciences, 2018, 19, 1604.	1.8	4
23	Synthesized Heparan Sulfate Competitors Attenuate Pseudomonas aeruginosa Lung Infection. International Journal of Molecular Sciences, 2018, 19, 207.	1.8	11
24	Genome-Based Approach Delivers Vaccine Candidates Against Pseudomonas aeruginosa. Frontiers in Immunology, 2018, 9, 3021.	2.2	29
25	The shedding-derived soluble receptor for advanced glycation endproducts sustains inflammation during acute Pseudomonas aeruginosa lung infection. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 354-364.	1.1	24
26	Myriocin treatment of CF lung infection and inflammation: complex analyses for enigmatic lipids. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 775-790.	1.4	11
27	Dissection of Host Susceptibility to Bacterial Infections and Its Toxins. Methods in Molecular Biology, 2017, 1488, 551-578.	0.4	4
28	Aerosolized bovine lactoferrin reduces neutrophils and pro-inflammatory cytokines in mouse models of <i>Pseudomonas aeruginosa</i> lung infections. Biochemistry and Cell Biology, 2017, 95, 41-47.	0.9	42
29	The PAPI-1 pathogenicity island-encoded small RNA PesA influences Pseudomonas aeruginosa virulence and modulates pyocin S3 production. PLoS ONE, 2017, 12, e0180386.	1.1	13
30	Environmental Burkholderia cenocepacia Strain Enhances Fitness by Serial Passages during Long-Term Chronic Airways Infection in Mice. International Journal of Molecular Sciences, 2017, 18, 2417.	1.8	9
31	Tracking the immunopathological response to Pseudomonas aeruginosa during respiratory infections. Scientific Reports, 2016, 6, 21465.	1.6	70
32	IL-17A impairs host tolerance during airway chronic infection by Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 25937.	1.6	41
33	The IL-17A/IL-17RA axis in pulmonary defence and immunopathology. Cytokine and Growth Factor Reviews, 2016, 30, 19-27.	3.2	30
34	Lentiviral Vector Gene Therapy Protects XCGD Mice From Acute Staphylococcus aureus Pneumonia and Inflammatory Response. Molecular Therapy, 2016, 24, 1873-1880.	3.7	14
35	Genotypic and phenotypic relatedness of Pseudomonas aeruginosa isolates among the major cystic fibrosis patient cohort in Italy. BMC Microbiology, 2016, 16, 142.	1.3	13
36	The host genetic background defines diverse immune-reactivity and susceptibility to chronic Pseudomonas aeruginosa respiratory infection. Scientific Reports, 2016, 6, 36924.	1.6	10

#	Article	IF	CITATIONS
37	Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection. Infection and Immunity, 2016, 84, 2324-2335.	1.0	192
38	Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia. Antimicrobial Agents and Chemotherapy, 2016, 60, 4991-5000.	1.4	38
39	Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice. BMC Genomics, 2016, 17, 351.	1.2	10
40	In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa. Scientific Reports, 2015, 5, 17593.	1.6	29
41	Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics, 2015, 16, 1105.	1.2	50
42	Upregulation of TMEM16A Protein in Bronchial Epithelial Cells by Bacterial Pyocyanin. PLoS ONE, 2015, 10, e0131775.	1.1	31
43	Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia. Journal of Biological Chemistry, 2015, 290, 21305-21319.	1.6	47
44	Integrated wholeâ€genome screening for <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> virulence genes using multiple disease models reveals that pathogenicity is host specific. Environmental Microbiology, 2015, 17, 4379-4393.	1.8	56
45	Host-pathogen interplay in the respiratory environment of cystic fibrosis. Journal of Cystic Fibrosis, 2015, 14, 431-439.	0.3	81
46	Host genetic diversity influences the severity of Pseudomonas aeruginosa pneumonia in the Collaborative Cross mice. BMC Genetics, 2015, 16, 106.	2.7	44
47	Thymidine-Dependent Staphylococcus aureus Small-Colony Variants Are Induced by Trimethoprim-Sulfamethoxazole (SXT) and Have Increased Fitness during SXT Challenge. Antimicrobial Agents and Chemotherapy, 2015, 59, 7265-7272.	1.4	50
48	Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity. Molecular Immunology, 2015, 63, 166-175.	1.0	30
49	Adaptation of Pseudomonas aeruginosa in Cystic Fibrosis Airways Influences Virulence of Staphylococcus aureus In Vitro and Murine Models of Co-Infection. PLoS ONE, 2014, 9, e89614.	1.1	138
50	Inactivation of <i>thyA</i> in Staphylococcus aureus Attenuates Virulence and Has a Strong Impact on Metabolism and Virulence Gene Expression. MBio, 2014, 5, e01447-14.	1.8	70
51	Long Term Chronic Pseudomonas aeruginosa Airway Infection in Mice. Journal of Visualized Experiments, 2014, , .	0.2	60
52	BIIL 284 reduces neutrophil numbers but increases P. aeruginosa bacteremia and inflammation in mouse lungs. Journal of Cystic Fibrosis, 2014, 13, 156-163.	0.3	61
53	Pseudomonas aeruginosa reduces the expression of CFTR via post-translational modification of NHERF1. Pflugers Archiv European Journal of Physiology, 2014, 466, 2269-2278.	1.3	21
54	Anti-inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic potential in cystic fibrosis. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 586-594.	1.1	53

#	Article	IF	CITATIONS
55	Assessing Pseudomonas aeruginosa Virulence and the Host Response Using Murine Models of Acute and Chronic Lung Infection. Methods in Molecular Biology, 2014, 1149, 757-771.	0.4	33
56	Host Genetic Background Influences the Response to the Opportunistic Pseudomonas aeruginosa Infection Altering Cell-Mediated Immunity and Bacterial Replication. PLoS ONE, 2014, 9, e106873.	1.1	36
57	Affecting Pseudomonas aeruginosa Phenotypic Plasticity by Quorum Sensing Dysregulation Hampers Pathogenicity in Murine Chronic Lung Infection. PLoS ONE, 2014, 9, e112105.	1.1	8
58	Extended Staphylococcus aureus persistence in cystic fibrosis is associated with bacterial adaptation. International Journal of Medical Microbiology, 2013, 303, 685-692.	1.5	83
59	Repurposing the antimycotic drug flucytosine for suppression of <i>Pseudomonas aeruginosa</i> pathogenicity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7458-7463.	3.3	141
60	Response of CFTR-Deficient Mice to Long-Term chronic Pseudomonas aeruginosa Infection and PTX3 Therapy. Journal of Infectious Diseases, 2013, 208, 130-138.	1.9	39
61	Complete Genome Sequence of Persistent Cystic Fibrosis Isolate Pseudomonas aeruginosa Strain RP73. Genome Announcements, 2013, 1, .	0.8	41
62	Role of Toll Interleukin-1 Receptor (IL-1R) 8, a Negative Regulator of IL-1R/Toll-Like Receptor Signaling, in Resistance to Acute Pseudomonas aeruginosa Lung Infection. Infection and Immunity, 2012, 80, 100-109.	1.0	43
63	Antibiotic pressure compensates the biological cost associated with Pseudomonas aeruginosa hypermutable phenotypes in vitro and in a murine model of chronic airways infection. Journal of Antimicrobial Chemotherapy, 2012, 67, 962-969.	1.3	15
64	MudPIT analysis of released proteins in <i>Pseudomonas aeruginosa</i> laboratory and clinical strains in relation to pro-inflammatory effects. Integrative Biology (United Kingdom), 2012, 4, 270-279.	0.6	15
65	Oxidative stress and antioxidant therapy in cystic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 690-713.	1.8	186
66	Factors Contributing to Epidemic MRSA Clones Replacement in a Hospital Setting. PLoS ONE, 2012, 7, e43153.	1.1	36
67	Analysis of Pseudomonas aeruginosa Cell Envelope Proteome by Capture of Surface-Exposed Proteins on Activated Magnetic Nanoparticles. PLoS ONE, 2012, 7, e51062.	1.1	14
68	Cystic Fibrosis-Niche Adaptation of Pseudomonas aeruginosa Reduces Virulence in Multiple Infection Hosts. PLoS ONE, 2012, 7, e35648.	1.1	103
69	Modelling Co-Infection of the Cystic Fibrosis Lung by Pseudomonas aeruginosa and Burkholderia cenocepacia Reveals Influences on Biofilm Formation and Host Response. PLoS ONE, 2012, 7, e52330.	1.1	91
70	Correction: The Therapeutic Potential of the Humoral Pattern Recognition Molecule PTX3 in Chronic Lung Infection Caused by Pseudomonas aeruginosa. Journal of Immunology, 2011, 186, 7273-7273.	0.4	0
71	The Therapeutic Potential of the Humoral Pattern Recognition Molecule PTX3 in Chronic Lung Infection Caused by <i>Pseudomonas aeruginosa</i> . Journal of Immunology, 2011, 186, 5425-5434.	0.4	82
72	Positive Signature-Tagged Mutagenesis in Pseudomonas aeruginosa: Tracking Patho-Adaptive Mutations Promoting Airways Chronic Infection. PLoS Pathogens, 2011, 7, e1001270.	2.1	55

#	Article	IF	CITATIONS
73	Dampening Host Sensing and Avoiding Recognition in <i>Pseudomonas aeruginosa</i> Pneumonia. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	38
74	Fighting Back: Peptidomimetics as a New Weapon in the Battle Against Antibiotic Resistance. Science Translational Medicine, 2010, 2, 21ps9.	5.8	9
75	Impact of Chronic Pulmonary Infection with <i>Pseudomonas aeruginosa</i> on Transfection Mediated by Viral and Nonviral Vectors. Human Gene Therapy, 2010, 21, 351-356.	1.4	10
76	Murine models of acute and chronic lung infection with cystic fibrosis pathogens. International Journal of Medical Microbiology, 2010, 300, 584-593.	1.5	110
77	<i>Pseudomonas aeruginosa</i> Microevolution during Cystic Fibrosis Lung Infection Establishes Clones with Adapted Virulence. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 138-145.	2.5	247
78	Pseudomonas aeruginosa Exploits Lipid A and Muropeptides Modification as a Strategy to Lower Innate Immunity during Cystic Fibrosis Lung Infection. PLoS ONE, 2009, 4, e8439.	1.1	116
79	<i>Burkholderia cenocepacia</i> strains isolated from cystic fibrosis patients are apparently more invasive and more virulent than rhizosphere strains. Environmental Microbiology, 2008, 10, 2773-2784.	1.8	30
80	Role of Biophysical Parameters on ex Vivo and in Vivo Gene Transfer to the Airway Epithelium by Polyethylenimine/Albumin Complexes. Biomacromolecules, 2008, 9, 859-866.	2.6	15
81	In Vivo Growth of Pseudomonas aeruginosa Strains PAO1 and PA14 and the Hypervirulent Strain LESB58 in a Rat Model of Chronic Lung Infection. Journal of Bacteriology, 2008, 190, 2804-2813.	1.0	89
82	<i>Pseudomonas aeruginosa</i> Infection Destroys the Barrier Function of Lung Epithelium and Enhances Polyplex-Mediated Transfection. Human Gene Therapy, 2007, 18, 642-652.	1.4	44
83	Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. Microbiology (United Kingdom), 2007, 153, 1445-1454.	0.7	85
84	Virulence of Burkholderia cepacia complex strains in gp91phoxâ^'/â^' mice. Cellular Microbiology, 2007, 9, 2817-2825.	1.1	65
85	The staphylococcal respiratory response regulator SrrAB induces <i>ica</i> gene transcription and polysaccharide intercellular adhesin expression, protecting <i>Staphylococcus aureus</i> from neutrophil killing under anaerobic growth conditions. Molecular Microbiology, 2007, 65, 1276-1287.	1.2	94
86	The staphylococcal respiratory response regulator SrrAB induces ica gene transcription and polysaccharide intercellular adhesin expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Molecular Microbiology, 2007, 66, 278-278.	1.2	2
87	Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology (United Kingdom), 2006, 152, 3261-3269.	0.7	115
88	NonmucoidPseudomonas aeruginosaExpresses Alginate in the Lungs of Patients with Cystic Fibrosis and in a Mouse Model. Journal of Infectious Diseases, 2005, 192, 410-419.	1.9	128
89	Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Molecular Therapy, 2005, 12, 468-474.	3.7	773
90	Airway epithelial cell–pathogen interactions. Journal of Cystic Fibrosis, 2004, 3, 197-201.	0.3	13

#	Article	IF	CITATIONS
91	Biochemical characterization of bona fide polycystin-1 in vitro and in vivo. American Journal of Kidney Diseases, 2001, 38, 1421-1429.	2.1	46
92	A new Chinese hamster ovary cell line expressing α2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochimica Et Biophysica Acta - General Subjects, 2000, 1474, 273-282.	1.1	79
93	Expression of recombinant human granulocyte colony-stimulating factor in CHO dhfrâ^ cells: new insights into the in vitro amplification expression system. Gene, 1996, 180, 145-150.	1.0	15