Rita Rosenthal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5175785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tight junction channels claudinâ€10b and claudinâ€15: Functional mapping of poreâ€lining residues. Annals of the New York Academy of Sciences, 2022, 1515, 129-142.	3.8	9
2	The Punicalagin Metabolites Ellagic Acid and Urolithin A Exert Different Strengthening and Anti-Inflammatory Effects on Tight Junction-Mediated Intestinal Barrier Function In Vitro. Frontiers in Pharmacology, 2021, 12, 610164.	3.5	24
3	Angulin-1 (LSR) Affects Paracellular Water Transport, However Only in Tight Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 7827.	4.1	6
4	Claudinâ€15 forms a water channel through the tight junction with distinct function compared to claudinâ€2. Acta Physiologica, 2020, 228, e13334.	3.8	35
5	Differential day-night expression of tight junction components in murine retinal pigment epithelium. Experimental Eye Research, 2020, 193, 107985.	2.6	14
6	HDAC inhibitors promote intestinal epithelial regeneration via autocrine TGFβ1 signalling in inflammation. Mucosal Immunology, 2019, 12, 656-667.	6.0	56
7	Tricellulin Effect on Paracellular Water Transport. International Journal of Molecular Sciences, 2019, 20, 5700.	4.1	15
8	Lactoferrin protects against intestinal inflammation and bacteriaâ€induced barrier dysfunction <i>in vitro</i> . Annals of the New York Academy of Sciences, 2017, 1405, 177-188.	3.8	60
9	Zinc treatment is efficient against Escherichia coli α-haemolysin-induced intestinal leakage in mice. Scientific Reports, 2017, 7, 45649.	3.3	31
10	Myrrh exerts barrier-stabilising and -protective effects in HT-29/B6 and Caco-2 intestinal epithelial cells. International Journal of Colorectal Disease, 2017, 32, 623-634.	2.2	19
11	Water channels and barriers formed by claudins. Annals of the New York Academy of Sciences, 2017, 1397, 100-109.	3.8	51
12	Claudinâ€⊉â€mediated cation and water transport share a common pore. Acta Physiologica, 2017, 219, 521-536.	3.8	93
13	The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signaling. Molecular Nutrition and Food Research, 2016, 60, 2576-2586.	3.3	70
14	Significant water absorption goes paracellular in kidney proximal tubules. American Journal of Physiology - Renal Physiology, 2014, 306, F51-F52.	2.7	1
15	Contribution of Tight Junction Proteins to Ion, Macromolecule, and Water Barrier in Keratinocytes. Journal of Investigative Dermatology, 2013, 133, 1161-1169.	0.7	136
16	Claudin-17 forms tight junction channels with distinct anion selectivity. Cellular and Molecular Life Sciences, 2012, 69, 2765-2778.	5.4	103
17	The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials, 2012, 33, 2791-2800.	11.4	108
18	Analysis of absorption enhancers in epithelial cell models. Annals of the New York Academy of Sciences 2012, 1258, 86-92	3.8	22

RITA ROSENTHAL

#	Article	IF	CITATIONS
19	Endothelin antagonism as an active principle for glaucoma therapy. British Journal of Pharmacology, 2011, 162, 806-816.	5.4	53
20	Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers. Laboratory Investigation, 2011, 91, 310-324.	3.7	35
21	Claudin-2, a component of the tight junction, forms a paracellular water channel. Journal of Cell Science, 2010, 123, 1913-1921.	2.0	345
22	Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2048-2057.	2.6	193
23	Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. Journal of Cell Science, 2009, 122, 1507-1517.	2.0	170
24	The tight junction protein claudinâ€⊋ forms a paracellular water channel. FASEB Journal, 2009, 23, 796.5.	0.5	1
25	Expression profile of voltage-dependent Ca2+ channel subunits in the human retinal pigment epithelium. Graefe's Archive for Clinical and Experimental Ophthalmology, 2008, 246, 685-692.	1.9	18
26	Effects of endothelin-1 on calcium-independent contraction of bovine trabecular meshwork. Graefe's Archive for Clinical and Experimental Ophthalmology, 2008, 246, 1107-1115.	1.9	27
27	Endothelin receptor B in trabecular meshwork. Experimental Eye Research, 2007, 85, 482-491.	2.6	13
28	Ca2+ channels in retinal pigment epithelial cells regulate vascular endothelial growth factor secretion rates in health and disease. Molecular Vision, 2007, 13, 443-56.	1.1	57
29	Endothelin Antagonism: Effects of FP Receptor Agonists Prostaglandin F2αand Fluprostenol on Trabecular Meshwork Contractility. , 2006, 47, 938.		47
30	Pharmacological and Functional Characterization of Endothelin Receptors in Bovine Trabecular Meshwork and Ciliary Muscle. Ophthalmic Research, 2005, 37, 179-187.	1.9	20
31	The fibroblast growth factor receptors, FGFR-1 and FGFR-2, mediate two independent signalling pathways in human retinal pigment epithelial cells. Biochemical and Biophysical Research Communications, 2005, 337, 241-247.	2.1	50
32	Effects of ML-7 and Y-27632 on carbachol- and endothelin-1-induced contraction of bovine trabecular meshwork. Experimental Eye Research, 2005, 80, 837-845.	2.6	60
33	Insulin-like growth factor-1 contributes to neovascularization in age-related macular degeneration. Biochemical and Biophysical Research Communications, 2004, 323, 1203-1208.	2.1	59
34	Ca2+-Channels in the RPE. Advances in Experimental Medicine and Biology, 2002, , 225-235.	1.6	35
35	Fibroblast growth factor receptor 2 (FGFR2) in brain neurons and retinal pigment epithelial cells act via stimulation of neuroendocrine L-type channels (Cav1.3). FASEB Journal, 2001, 15, 970-977.	0.5	39
36	Activation of Neuroendocrine L-Type Channels (α1D Subunits) in Retinal Pigment Epithelial Cells and Brain Neurons by pp60c-src. Biochemical and Biophysical Research Communications, 2000, 270, 806-810.	2.1	43