J Carlos Penedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5175595/publications.pdf

Version: 2024-02-01

57	1,685	21	39
papers	citations	h-index	g-index
60	60	60	1800 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	The influence of various regions of the FOXP2 sequence on its structure and DNA-binding function. Bioscience Reports, 2021, 41, .	2.4	4
2	A structural intermediate pre-organizes the <i>add</i> adenine riboswitch for ligand recognition. Nucleic Acids Research, 2021, 49, 5891-5904.	14.5	12
3	Fatty acids may influence insulin dynamics through modulation of albuminâ€Zn ²⁺ interactions. BioEssays, 2021, 43, e2100172.	2.5	5
4	Monitoring RNA dynamics in native transcriptional complexes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
5	Functional 3D architecture in an intrinsically disordered E3 ligase domain facilitates ubiquitin transfer. Nature Communications, 2020, 11, 3807.	12.8	11
6	Ubiquitin transfer by a RING E3 ligase occurs from a closed E2~ubiquitin conformation. Nature Communications, 2020, 11, 2846.	12.8	25
7	Asymmetric base-pair opening drives helicase unwinding dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22471-22477.	7.1	15
8	Single-Molecule Spectroscopy of Polyfluorene Chains Reveals \hat{l}^2 -Phase Content and Phase Reversibility in Organic Solvents. Matter, 2019, 1, 1399-1410.	10.0	6
9	Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents. Scientific Reports, 2019, 9, 12897.	3.3	20
10	Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2+. Nucleic Acids Research, 2019, 47, 6478-6487.	14.5	22
11	Twin-FRET: A New Molecular Ruler for Biomolecules. Biophysical Journal, 2019, 116, 565a.	0.5	0
12	Real-time observation of conformational switching in single conjugated polymer chains. Science Advances, 2018, 4, eaao5786.	10.3	17
13	High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein. Extremophiles, 2017, 21, 369-379.	2.3	14
14	An integrated perspective on RNA aptamer ligand-recognition models: clearing muddy waters. Physical Chemistry Chemical Physics, 2017, 19, 6921-6932.	2.8	9
15	DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain. DNA Repair, 2017, 57, 125-132.	2.8	16
16	Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Frontiers in Chemistry, 2016, 4, 33.	3.6	53
17	Morphologyâ€Specific Inhibition of βâ€Amyloid Aggregates by 17βâ€Hydroxysteroid Dehydrogenase Type 10. ChemBioChem, 2016, 17, 1029-1037.	2.6	12
18	Biophysical Approaches to Bacterial Gene Regulation by Riboswitches. Advances in Experimental Medicine and Biology, 2016, 915, 157-191.	1.6	7

#	Article	IF	Citations
19	Mechanism of DNA loading by the DNA repair helicase XPD. Nucleic Acids Research, 2016, 44, 2806-2815.	14.5	37
20	High-Affinity Fluorescence Sensing of G-Quadruplexes. Biophysical Journal, 2015, 108, 393a.	0.5	1
21	Towards Ratiometric Sensing of Amyloid Fibrils In Vitro. Chemistry - A European Journal, 2015, 21, 3425-3434.	3.3	23
22	Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms. Methods in Molecular Biology, 2015, 1334, 101-107.	0.9	7
23	Functional Studies of DNA-Protein Interactions Using FRET Techniques. Methods in Molecular Biology, 2015, 1334, 115-141.	0.9	12
24	Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach. Nucleic Acids Research, 2015, 43, 10907-10924.	14.5	25
25	Single-Molecule Strategies for DNA and RNA Diagnostics. RNA Technologies, 2015, , 297-332.	0.3	3
26	Using sm-FRET and Denaturants to Reveal Folding Landscapes. Methods in Enzymology, 2014, 549, 313-341.	1.0	13
27	Single-molecule characterization of Fen1 and Fen1/PCNA complexes acting on flap substrates. Nucleic Acids Research, 2014, 42, 1857-1872.	14.5	40
28	Real-time probing of \hat{l}^2 -amyloid self-assembly and inhibition using fluorescence self-quenching between neighbouring dyes. Molecular BioSystems, 2014, 10, 34-44.	2.9	37
29	The phosphorylation of Hsp20 enhances its association with amyloid- \hat{l}^2 to increase protection against neuronal cell death. Molecular and Cellular Neurosciences, 2014, 61, 46-55.	2.2	19
30	Fluorescence tools to investigate riboswitch structural dynamics. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1005-1019.	1.9	26
31	Single-Molecule Fluorescence of Nucleic Acids. Methods in Molecular Biology, 2014, 1076, 759-791.	0.9	13
32	Solubilisation of Lipid Membranes by Detergents: Probing the Three-State Model at the Single Vesicle Level. Biophysical Journal, 2013, 104, 174a.	0.5	0
33	Structure and Functional Dynamics of Fluoride-Sensing Riboswitches. Biophysical Journal, 2013, 104, 411a.	0.5	0
34	Solution-Based Single Molecule Imaging of Surface-Immobilized Conjugated Polymers. Journal of the American Chemical Society, 2013, 135, 7187-7193.	13.7	15
35	Single-molecule chemical denaturation of riboswitches. Nucleic Acids Research, 2013, 41, 4253-4265.	14.5	30
36	Folding of the SAM-I riboswitch. RNA Biology, 2012, 9, 535-541.	3.1	22

#	Article	IF	Citations
37	Molecular Insights Into the Organization and Folding Dynamics of Metabolite-Sensing Riboswitches. Biophysical Journal, 2011, 100, 1a.	0.5	0
38	Molecular insights into the ligand-controlled organization of the SAM-I riboswitch. Nature Chemical Biology, 2011, 7, 384-392.	8.0	108
39	Constitutive Regulatory Activity of an Evolutionarily Excluded Riboswitch Variant. Journal of Biological Chemistry, 2011, 286, 27406-27415.	3.4	20
40	PCNA and XPF cooperate to distort DNA substrates. Nucleic Acids Research, 2010, 38, 1664-1675.	14.5	23
41	Riboswitches: Ancient and Promising Genetic Regulators. ChemBioChem, 2009, 10, 400-416.	2.6	78
42	Natural Functional Nucleic Acids: Ribozymes and Riboswitches. , 2009, , 11-46.		1
43	Application of Fluorescent Measurements for Characterization of Riboswitch–Ligand Interactions. Methods in Molecular Biology, 2009, 540, 25-37.	0.9	16
44	Molecular Basis of RNA-Mediated Gene Regulation on the Adenine Riboswitch by Single-Molecule Approaches. Methods in Molecular Biology, 2009, 540, 65-76.	0.9	19
45	Functional Studies of DNA-Protein Interactions Using FRET Techniques. Methods in Molecular Biology, 2009, 543, 475-502.	0.9	22
46	PCNA stimulates catalysis by structure-specific nucleases using two distinct mechanisms: substrate targeting and catalytic step. Nucleic Acids Research, 2008, 36, 6720-6727.	14.5	25
47	Solvent dependent photophysics of fac- $[Re(CO)3(11,12-X2dppz)(py)]+(X = H, F or Me)$. Photochemical and Photobiological Sciences, 2007, 6, 741.	2.9	31
48	Folding of the Adenine Riboswitch. Chemistry and Biology, 2006, 13, 857-868.	6.0	255
49	Photophysical study of a family of [Ru(phen)2(Mendpq)]2+ complexes in different solvents and DNA: a specific water effect promoted by methyl substitution. Dalton Transactions, 2005, , 1123.	3.3	43
50	Two Competitive Routes in the Lactimâ^'Lactam Phototautomerization of a Hydroxypyridine Derivative Cation in Water:  Dissociative Mechanism versus Water-Assisted Proton Transfer. Journal of Physical Chemistry A, 2005, 109, 10189-10198.	2.5	7
51	Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. Rna, 2004, 10, 880-888.	3.5	138
52	Solvent-Dependent Ground- and Excited-State Tautomerism in 2-(6â€~-Hydroxy-2â€~-pyridyl)benzimidazole. Journal of Physical Chemistry A, 2004, 108, 6117-6126.	2.5	19
53	Ultrafast transient absorption studies of ruthenium and rhenium dipyridophenazine complexes bound to DNA and polynucleotides. , 2003, , .		3
54	Role of Hydrogen-Bonded Adducts in Excited-State Proton-Transfer Processes. Journal of Physical Chemistry A, 2000, 104, 7429-7441.	2.5	34

#	Article	IF	CITATIONS
55	On the Mechanism of Alcohol-Catalyzed Excited-State Intramolecular Proton Transfer in Cationic Benzimidazoles. Journal of Physical Chemistry A, 1999, 103, 7236-7243.	2.5	23
56	Solvent control of molecular structure and excited-state proton-transfer processes of 1-methyl-2-(2′-hydroxyphenyl)- benzimidazole. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2775-2782.	1.7	54
57	Photoinduced Inter- and Intramolecular Proton Transfer in Aqueous and Ethanolic Solutions of 2-(2â€~-Hydroxyphenyl)benzimidazole: Evidence for Tautomeric and Conformational Equilibria in the Ground Stateâ€. The Journal of Physical Chemistry, 1996, 100, 5398-5407.	2.9	177