Juan Alcaiz-Monge

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/517528/juan-alcaniz-monge-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58	2,813	25	53
papers	citations	h-index	g-index
59 ext. papers	2,998 ext. citations	6.5 avg, IF	4.77 L-index

#	Paper Paper	IF	Citations
58	Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 194-203	21.8	84
57	Development of tailored mesoporosity in carbonised cocoa bean husk. <i>Microporous and Mesoporous Materials</i> , 2018 , 256, 128-139	5.3	8
56	Zirconia-supported 11-molybdovanadophosphoric acid catalysts: effect of the preparation method on their catalytic activity and selectivity. <i>Acta Crystallographica Section C, Structural Chemistry</i> , 2018 , 74, 1334-1347	0.8	1
55	Preparation of binderless activated carbon monoliths from cocoa bean husk. <i>Microporous and Mesoporous Materials</i> , 2017 , 243, 28-38	5.3	29
54	Superactivated carbons by CO2 activation of loquat stones. Fuel Processing Technology, 2017, 159, 345-	35.2	7
53	A Simple Approach To Develop Tailored Mesoporosity in Nanostructured Heteropolysalts. <i>Chemistry - A European Journal</i> , 2017 , 23, 2387-2395	4.8	1
52	Gas-Adsorbing Nanoporous Carbons 2016 , 465-486		
51	Unusual pre-oxidized polyacrylonitrile fibres behaviour against their activation with CO2: carbonization effect. <i>Adsorption</i> , 2016 , 22, 223-231	2.6	5
50	A Robust Open Framework Formed by Decavanadate Clusters and Copper(II) Complexes of Macrocyclic Polyamines: Permanent Microporosity and Catalytic Oxidation of Cycloalkanes. <i>Inorganic Chemistry</i> , 2016 , 55, 4970-9	5.1	37
49	Dimeric assemblies of lanthanide-stabilised dilacunary Keggin tungstogermanates: A new class of catalysts for the selective oxidation of aniline. <i>Journal of Catalysis</i> , 2015 , 331, 110-117	7.3	15
48	Influence of peroxometallic intermediaries present on polyoxometalates nanoparticles surface on the adipic acid synthesis. <i>Journal of Molecular Catalysis A</i> , 2014 , 394, 211-216		20
47	Biodiesel production by acid catalysis with heteropolyacids supported on activated carbon fibers. <i>Applied Catalysis A: General</i> , 2013 , 468, 432-441	5.1	41
46	Fundamentals of vapors adsorption onto activated carbon fibers assessed by the comparative analysis of N2 and CO2 adsorption. <i>Separation and Purification Technology</i> , 2012 , 85, 83-89	8.3	5
45	Removal of Harmful Volatile Organic Compounds on Activated Carbon Fibres Prepared by Steam or Carbon Dioxide Activation. <i>Adsorption Science and Technology</i> , 2012 , 30, 473-482	3.6	9
44	Monolithic Carbon Molecular Sieves from activated bituminous coal impregnated with a slurry of coal tar pitch. <i>Fuel Processing Technology</i> , 2012 , 95, 67-72	7.2	17
43	Effect of counteranion of ammonium salts on the synthesis of porous nanoparticles (NH4)3[PMo12O40]. <i>Solid State Sciences</i> , 2011 , 13, 30-37	3.4	9
42	CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. <i>Fuel Processing Technology</i> , 2011 , 92, 915-919	7.2	33

(2003-2010)

41	Effect of the Pre-oxidation of Coals in the Preparation of Chemically Activated Carbon Pellets Energy & Energy	4.1	9
40	Influence of pore size distribution on water adsorption on silica gels. <i>Journal of Porous Materials</i> , 2010 , 17, 409-416	2.4	17
39	New insights on the direct activation of isotropic petroleum pitch by alkaline hydroxides. <i>Fuel Processing Technology</i> , 2010 , 91, 145-149	7.2	10
38	Effects of compression on the textural properties of porous solids. <i>Microporous and Mesoporous Materials</i> , 2009 , 126, 291-301	5.3	36
37	Fundamentals of methane adsorption in microporous carbons. <i>Microporous and Mesoporous Materials</i> , 2009 , 124, 110-116	5.3	70
36	Isotropic petroleum pitch as a carbon precursor for the preparation of activated carbons by KOH activation. <i>Carbon</i> , 2009 , 47, 2141-2142	10.4	35
35	Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. <i>Adsorption</i> , 2008 , 14, 93-100	2.6	6
34	Insight into hydroxides-activated coals: chemical or physical activation?. <i>Journal of Colloid and Interface Science</i> , 2008 , 318, 35-41	9.3	32
33	NO adsorption on activated carbon fibers from iron-containing pitch. <i>Microporous and Mesoporous Materials</i> , 2008 , 108, 294-302	5.3	21
32	Effect of the stabilisation time of pitch fibres on the molecular sieve properties of carbon fibres. <i>Microporous and Mesoporous Materials</i> , 2008 , 109, 21-27	5.3	12
31	Influence of microporosity of activated carbons as a support of polyoxometalates. <i>Microporous and Mesoporous Materials</i> , 2008 , 115, 440-446	5.3	42
30	Comparative study of the micropore development on physical activation of carbon fibers from coal tar and petroleum pitches. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 125-132	5.3	16
29	Upper limit of hydrogen adsorption on activated carbons at room temperature: A thermodynamic approach to understand the hydrogen adsorption on microporous carbons. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 510-520	5.3	16
28	Stabilisation of low softening point petroleum pitch fibres by iodine treatment. <i>Fuel Processing Technology</i> , 2007 , 88, 265-272	7.2	8
27	The influence of iron chloride addition to the precursor pitch on the formation of activated carbon fibers. <i>Microporous and Mesoporous Materials</i> , 2007 , 100, 202-209	5.3	12
26	Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. <i>Carbon</i> , 2005 , 43, 1643-1651	10.4	42
25	Characterisation of conductive CVD carbonglass fibres. <i>Carbon</i> , 2004 , 42, 2349-2351	10.4	4
24	Assessment of Ultramicroporosity on Carbon Molecular Sieves by Water Adsorption. <i>Adsorption Science and Technology</i> , 2003 , 21, 841-848	3.6	8

23	Stabilisation of low softening point petroleum pitch fibres by HNO3. <i>Carbon</i> , 2003 , 41, 1001-1007	10.4	19
22	Activated carbon fibre monoliths. Fuel Processing Technology, 2002, 77-78, 445-451	7.2	15
21	Advances in the study of methane storage in porous carbonaceous materials. Fuel, 2002, 81, 1777-1803	7.1	330
20	Development of new carbon honeycomb structures from cellulose and pitch. <i>Carbon</i> , 2002 , 40, 541-550	10.4	20
19	CarbonBeramic composites from coal tar pitch and clays: application as electrocatalyst support. <i>Carbon</i> , 2002 , 40, 2193-2200	10.4	17
18	Theoretical calculation of high micropore volumes on activated carbons. <i>Studies in Surface Science and Catalysis</i> , 2002 , 144, 193-200	1.8	1
17	Assessment of ultramicroporosity on carbon molecular sieves by water adsorption. <i>Studies in Surface Science and Catalysis</i> , 2002 , 144, 201-208	1.8	
16	Water adsorption on micro and mesoporous silicas. <i>Studies in Surface Science and Catalysis</i> , 2002 , 144, 291-298	1.8	
15	Mechanism of Adsorption of Water in Carbon Micropores As Revealed by a Study of Activated Carbon Fibers. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3209-3216	3.4	73
14	Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation. <i>Fuel</i> , 2001 , 80, 41-48	7.1	91
13	Water Adsorption on Activated Carbons: ☐Study of Water Adsorption in Micro- and Mesopores. Journal of Physical Chemistry B, 2001 , 105, 7998-8006	3.4	60
12	Molecular sieve properties of general-purpose carbon fibres. <i>Carbon</i> , 1998 , 36, 1353-1360	10.4	42
11	Characterization of activated carbon fibers by small angle x-ray scattering. <i>Carbon</i> , 1998 , 36, 309-312	10.4	21
10	CO2As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons. <i>Langmuir</i> , 1998 , 14, 4589-4596	4	333
9	Further Advances in the Characterization of Microporous Carbons by Physical Adsorption of Gases. <i>Tanso</i> , 1998 , 1998, 316-325	0.1	57
8	Methane storage in activated carbon fibres. <i>Carbon</i> , 1997 , 35, 291-297	10.4	131
7	Preparation of general purpose carbon fibers from coal tar pitches with low softening point. <i>Carbon</i> , 1997 , 35, 1079-1087	10.4	78
6	Theoretical and experimental studies of methane adsorption on microporous carbons. <i>Carbon</i> , 1997 , 35, 1251-1258	10.4	99

LIST OF PUBLICATIONS

5	Production of activated carbons: use of CO2 versus H2O as activating agent. A reply to a letter from P. L. Walker Jr <i>Carbon</i> , 1997 , 35, 1665-1668	10.4	23
4	Characterization of Activated Carbon Fibers by CO2 Adsorption. <i>Langmuir</i> , 1996 , 12, 2820-2824	4	345
3	Preparation and properties of an antibacterial activated carbon fiber containing mesopores. <i>Carbon</i> , 1996 , 34, 53-57	10.4	66
2	Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. <i>Carbon</i> , 1995 , 33, 1085-1090	10.4	156
1	Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres. <i>Carbon</i> , 1994 , 32, 1277-1283	10.4	119