Juan Alcaiz-Monge

List of Publications by Citations

Source: https://exaly.com/author-pdf/517528/juan-alcaniz-monge-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,813 58 25 53 h-index g-index citations papers 6.5 2,998 4.77 59 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
58	Characterization of Activated Carbon Fibers by CO2 Adsorption. <i>Langmuir</i> , 1996 , 12, 2820-2824	4	345
57	CO2As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons. <i>Langmuir</i> , 1998 , 14, 4589-4596	4	333
56	Advances in the study of methane storage in porous carbonaceous materials. Fuel, 2002, 81, 1777-1803	7.1	330
55	Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. <i>Carbon</i> , 1995 , 33, 1085-1090	10.4	156
54	Methane storage in activated carbon fibres. <i>Carbon</i> , 1997 , 35, 291-297	10.4	131
53	Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres. <i>Carbon</i> , 1994 , 32, 1277-1283	10.4	119
52	Theoretical and experimental studies of methane adsorption on microporous carbons. <i>Carbon</i> , 1997 , 35, 1251-1258	10.4	99
51	Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation. <i>Fuel</i> , 2001 , 80, 41-48	7.1	91
50	Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 194-203	21.8	84
49	Preparation of general purpose carbon fibers from coal tar pitches with low softening point. <i>Carbon</i> , 1997 , 35, 1079-1087	10.4	78
48	Mechanism of Adsorption of Water in Carbon Micropores As Revealed by a Study of Activated Carbon Fibers. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3209-3216	3.4	73
47	Fundamentals of methane adsorption in microporous carbons. <i>Microporous and Mesoporous Materials</i> , 2009 , 124, 110-116	5.3	70
46	Preparation and properties of an antibacterial activated carbon fiber containing mesopores. <i>Carbon</i> , 1996 , 34, 53-57	10.4	66
45	Water Adsorption on Activated Carbons: □Study of Water Adsorption in Micro- and Mesopores. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7998-8006	3.4	60
44	Further Advances in the Characterization of Microporous Carbons by Physical Adsorption of Gases. <i>Tanso</i> , 1998 , 1998, 316-325	0.1	57
43	Molecular sieve properties of general-purpose carbon fibres. <i>Carbon</i> , 1998 , 36, 1353-1360	10.4	42
42	Influence of microporosity of activated carbons as a support of polyoxometalates. <i>Microporous and Mesoporous Materials</i> , 2008 , 115, 440-446	5.3	42

(2008-2005)

5.1 5.3 10.4 7.2 9.3	 41 37 36 35 33 32
5·3 10.4 7·2 9·3	36 35 33
7.2 9.3	35
7.2 9.3	33
9.3	
	32
5.3	29
10.4	23
10.4	21
5.3	21
	20
50 10.4	20
10.4	19
7.2	17
2.4	17
10.4	17
5.3	16
	5·3 50 10.4 10.4 7·2 2.4 10.4

23	Upper limit of hydrogen adsorption on activated carbons at room temperature: A thermodynamic approach to understand the hydrogen adsorption on microporous carbons. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 510-520	5.3	16
22	Dimeric assemblies of lanthanide-stabilised dilacunary Keggin tungstogermanates: A new class of catalysts for the selective oxidation of aniline. <i>Journal of Catalysis</i> , 2015 , 331, 110-117	7-3	15
21	Activated carbon fibre monoliths. Fuel Processing Technology, 2002, 77-78, 445-451	7.2	15
20	The influence of iron chloride addition to the precursor pitch on the formation of activated carbon fibers. <i>Microporous and Mesoporous Materials</i> , 2007 , 100, 202-209	5.3	12
19	Effect of the stabilisation time of pitch fibres on the molecular sieve properties of carbon fibres. <i>Microporous and Mesoporous Materials</i> , 2008 , 109, 21-27	5.3	12
18	New insights on the direct activation of isotropic petroleum pitch by alkaline hydroxides. <i>Fuel Processing Technology</i> , 2010 , 91, 145-149	7.2	10
17	Removal of Harmful Volatile Organic Compounds on Activated Carbon Fibres Prepared by Steam or Carbon Dioxide Activation. <i>Adsorption Science and Technology</i> , 2012 , 30, 473-482	3.6	9
16	Effect of counteranion of ammonium salts on the synthesis of porous nanoparticles (NH4)3[PMo12O40]. <i>Solid State Sciences</i> , 2011 , 13, 30-37	3.4	9
15	Effect of the Pre-oxidation of Coals in the Preparation of Chemically Activated Carbon Pellets <i>Energy & Energy & Energy</i>	4.1	9
14	Development of tailored mesoporosity in carbonised cocoa bean husk. <i>Microporous and Mesoporous Materials</i> , 2018 , 256, 128-139	5.3	8
13	Stabilisation of low softening point petroleum pitch fibres by iodine treatment. <i>Fuel Processing Technology</i> , 2007 , 88, 265-272	7.2	8
12	Assessment of Ultramicroporosity on Carbon Molecular Sieves by Water Adsorption. <i>Adsorption Science and Technology</i> , 2003 , 21, 841-848	3.6	8
11	Superactivated carbons by CO2 activation of loquat stones. Fuel Processing Technology, 2017, 159, 345-	·3 5 .2	7
10	Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. <i>Adsorption</i> , 2008 , 14, 93-100	2.6	6
9	Unusual pre-oxidized polyacrylonitrile fibres behaviour against their activation with CO2: carbonization effect. <i>Adsorption</i> , 2016 , 22, 223-231	2.6	5
8	Fundamentals of vapors adsorption onto activated carbon fibers assessed by the comparative analysis of N2 and CO2 adsorption. <i>Separation and Purification Technology</i> , 2012 , 85, 83-89	8.3	5
7	Characterisation of conductive CVD carbonglass fibres. <i>Carbon</i> , 2004 , 42, 2349-2351	10.4	4
6	A Simple Approach To Develop Tailored Mesoporosity in Nanostructured Heteropolysalts. Chemistry - A European Journal, 2017 , 23, 2387-2395	4.8	1

LIST OF PUBLICATIONS

5	Theoretical calculation of high micropore volumes on activated carbons. <i>Studies in Surface Science and Catalysis</i> , 2002 , 144, 193-200	1.8	1
4	Zirconia-supported 11-molybdovanadophosphoric acid catalysts: effect of the preparation method on their catalytic activity and selectivity. <i>Acta Crystallographica Section C, Structural Chemistry</i> , 2018 , 74, 1334-1347	0.8	1
3	Gas-Adsorbing Nanoporous Carbons 2016 , 465-486		
2	Assessment of ultramicroporosity on carbon molecular sieves by water adsorption. <i>Studies in Surface Science and Catalysis</i> , 2002 , 144, 201-208	1.8	
1	Water adsorption on micro and mesoporous silicas. <i>Studies in Surface Science and Catalysis</i> , 2002 , 144, 291-298	1.8	