
Juan Alcañiz-Monge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/517528/publications.pdf Version: 2024-02-01

HIAN ALCAÃ+1Z-MONCE

#	Article	IF	CITATIONS
1	Characterization of Activated Carbon Fibers by CO2 Adsorption. Langmuir, 1996, 12, 2820-2824.	3.5	378
2	Advances in the study of methane storage in porous carbonaceous materials. Fuel, 2002, 81, 1777-1803.	6.4	367
3	CO2As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons. Langmuir, 1998, 14, 4589-4596.	3.5	359
4	Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon, 1995, 33, 1085-1090.	10.3	173
5	Methane storage in activated carbon fibres. Carbon, 1997, 35, 291-297.	10.3	144
6	Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres. Carbon, 1994, 32, 1277-1283.	10.3	132
7	Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. Applied Catalysis B: Environmental, 2018, 224, 194-203.	20.2	121
8	Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation. Fuel, 2001, 80, 41-48.	6.4	110
9	Theoretical and experimental studies of methane adsorption on microporous carbons. Carbon, 1997, 35, 1251-1258.	10.3	104
10	Mechanism of Adsorption of Water in Carbon Micropores As Revealed by a Study of Activated Carbon Fibers. Journal of Physical Chemistry B, 2002, 106, 3209-3216.	2.6	88
11	Preparation of general purpose carbon fibers from coal tar pitches with low softening point. Carbon, 1997, 35, 1079-1087.	10.3	85
12	Fundamentals of methane adsorption in microporous carbons. Microporous and Mesoporous Materials, 2009, 124, 110-116.	4.4	82
13	Preparation and properties of an antibacterial activated carbon fiber containing mesopores. Carbon, 1996, 34, 53-57.	10.3	72
14	Water Adsorption on Activated Carbons:Â Study of Water Adsorption in Micro- and Mesopores. Journal of Physical Chemistry B, 2001, 105, 7998-8006.	2.6	69
15	Further Advances in the Characterization of Microporous Carbons by Physical Adsorption of Gases. Tanso, 1998, 1998, 316-325.	0.1	59
16	A Robust Open Framework Formed by Decavanadate Clusters and Copper(II) Complexes of Macrocyclic Polyamines: Permanent Microporosity and Catalytic Oxidation of Cycloalkanes. Inorganic Chemistry, 2016, 55, 4970-4979.	4.0	50
17	Biodiesel production by acid catalysis with heteropolyacids supported on activated carbon fibers. Applied Catalysis A: General, 2013, 468, 432-441.	4.3	48
18	Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. Carbon, 2005, 43, 1643-1651.	10.3	47

Juan Alcañiz-Monge

#	Article	IF	CITATIONS
19	Influence of microporosity of activated carbons as a support of polyoxometalates. Microporous and Mesoporous Materials, 2008, 115, 440-446.	4.4	47
20	Molecular sieve properties of general-purpose carbon fibres. Carbon, 1998, 36, 1353-1360.	10.3	43
21	Preparation of binderless activated carbon monoliths from cocoa bean husk. Microporous and Mesoporous Materials, 2017, 243, 28-38.	4.4	41
22	Insight into hydroxides-activated coals: Chemical or physical activation?. Journal of Colloid and Interface Science, 2008, 318, 35-41.	9.4	38
23	Effects of compression on the textural properties of porous solids. Microporous and Mesoporous Materials, 2009, 126, 291-301.	4.4	37
24	lsotropic petroleum pitch as a carbon precursor for the preparation of activated carbons by KOH activation. Carbon, 2009, 47, 2141-2142.	10.3	37
25	CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. Fuel Processing Technology, 2011, 92, 915-919.	7.2	33
26	Influence of peroxometallic intermediaries present on polyoxometalates nanoparticles surface on the adipic acid synthesis. Journal of Molecular Catalysis A, 2014, 394, 211-216.	4.8	31
27	NO adsorption on activated carbon fibers from iron-containing pitch. Microporous and Mesoporous Materials, 2008, 108, 294-302.	4.4	26
28	Production of activated carbons: use of CO2 versus H2O as activating agent. A reply to a letter from P. L. Walker Jr Carbon, 1997, 35, 1665-1668.	10.3	25
29	Stabilisation of low softening point petroleum pitch fibres by HNO3. Carbon, 2003, 41, 1001-1007.	10.3	24
30	Characterization of activated carbon fibers by small angle x-ray scattering. Carbon, 1998, 36, 309-312.	10.3	22
31	Development of new carbon honeycomb structures from cellulose and pitch. Carbon, 2002, 40, 541-550.	10.3	20
32	Monolithic Carbon Molecular Sieves from activated bituminous coal impregnated with a slurry of coal tar pitch. Fuel Processing Technology, 2012, 95, 67-72.	7.2	20
33	Carbon–ceramic composites from coal tar pitch and clays: application as electrocatalyst support. Carbon, 2002, 40, 2193-2200.	10.3	19
34	Influence of pore size distribution on water adsorption on silica gels. Journal of Porous Materials, 2010, 17, 409-416.	2.6	19
35	Dimeric assemblies of lanthanide-stabilised dilacunary Keggin tungstogermanates: A new class of catalysts for the selective oxidation of aniline. Journal of Catalysis, 2015, 331, 110-117.	6.2	19
36	Chemical Activation of Lignocellulosic Precursors and Residues: What Else to Consider?. Molecules, 2022, 27, 1630.	3.8	19

Juan Alcañiz-Monge

#	Article	IF	CITATIONS
37	Comparative study of the micropore development on physical activation of carbon fibers from coal tar and petroleum pitches. Microporous and Mesoporous Materials, 2008, 112, 125-132.	4.4	18
38	Upper limit of hydrogen adsorption on activated carbons at room temperature: A thermodynamic approach to understand the hydrogen adsorption on microporous carbons. Microporous and Mesoporous Materials, 2008, 112, 510-520.	4.4	18
39	Activated carbon fibre monoliths. Fuel Processing Technology, 2002, 77-78, 445-451.	7.2	16
40	The influence of iron chloride addition to the precursor pitch on the formation of activated carbon fibers. Microporous and Mesoporous Materials, 2007, 100, 202-209.	4.4	16
41	Removal of Harmful Volatile Organic Compounds on Activated Carbon Fibres Prepared by Steam or Carbon Dioxide Activation. Adsorption Science and Technology, 2012, 30, 473-482.	3.2	15
42	Effect of the stabilisation time of pitch fibres on the molecular sieve properties of carbon fibres. Microporous and Mesoporous Materials, 2008, 109, 21-27.	4.4	13
43	Effect of the Pre-oxidation of Coals in the Preparation of Chemically Activated Carbon Pellets. Energy & Fuels, 2010, 24, 3385-3393.	5.1	12
44	Assessment of Ultramicroporosity on Carbon Molecular Sieves by Water Adsorption. Adsorption Science and Technology, 2003, 21, 841-848.	3.2	10
45	New insights on the direct activation of isotropic petroleum pitch by alkaline hydroxides. Fuel Processing Technology, 2010, 91, 145-149.	7.2	10
46	Superactivated carbons by CO 2 activation of loquat stones. Fuel Processing Technology, 2017, 159, 345-352.	7.2	10
47	Stabilisation of low softening point petroleum pitch fibres by iodine treatment. Fuel Processing Technology, 2007, 88, 265-272.	7.2	9
48	Effect of counteranion of ammonium salts on the synthesis of porous nanoparticles (NH4)3[PMo12O40]. Solid State Sciences, 2011, 13, 30-37.	3.2	9
49	Development of tailored mesoporosity in carbonised cocoa bean husk. Microporous and Mesoporous Materials, 2018, 256, 128-139.	4.4	8
50	Characterisation of conductive CVD carbon–glass fibres. Carbon, 2004, 42, 2349-2351.	10.3	6
51	Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. Adsorption, 2008, 14, 93-100.	3.0	6
52	Fundamentals of vapors adsorption onto activated carbon fibers assessed by the comparative analysis of N2 and CO2 adsorption. Separation and Purification Technology, 2012, 85, 83-89.	7.9	5
53	Unusual pre-oxidized polyacrylonitrile fibres behaviour against their activation with CO2: carbonization effect. Adsorption, 2016, 22, 223-231.	3.0	5
54	Theoretical calculation of high micropore volumes on activated carbons. Studies in Surface Science and Catalysis, 2002, 144, 193-200.	1.5	2

#	Article	IF	CITATIONS
55	A Simple Approach To Develop Tailored Mesoporosity in Nanostructured Heteropolysalts. Chemistry - A European Journal, 2017, 23, 2387-2395.	3.3	1
56	Zirconia-supported 11-molybdovanadophosphoric acid catalysts: effect of the preparation method on their catalytic activity and selectivity. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1334-1347.	0.5	1
57	Assessment of ultramicroporosity on carbon molecular sieves by water adsorption. Studies in Surface Science and Catalysis, 2002, 144, 201-208.	1.5	0
58	Water adsorption on micro and mesoporous silicas. Studies in Surface Science and Catalysis, 2002, 144, 291-298.	1.5	0
59	Gas-Adsorbing Nanoporous Carbons. , 2016, , 465-486.		0