Francesco Turci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5175272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polymer Degradation and Stability, 2015, 112, 1-9.	2.7	365
2	Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Advanced Drug Delivery Reviews, 2011, 63, 1186-1209.	6.6	148
3	An Integrated Approach to the Study of the Interaction between Proteins and Nanoparticles. Langmuir, 2010, 26, 8336-8346.	1.6	110
4	Chemical stability and dehydration behavior of a sepiolite/indigo Maya Blue pigment. Applied Clay Science, 2011, 52, 41-50.	2.6	90
5	POTENTIAL TOXICITY OF NONREGULATED ASBESTIFORM MINERALS: BALANGEROITE FROM THE WESTERN ALPS. PART 1: IDENTIFICATION AND CHARACTERIZATION. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2005, 68, 1-19.	1.1	83
6	Iron-Loaded Synthetic Chrysotile:  A New Model Solid for Studying the Role of Iron in Asbestos Toxicity. Chemical Research in Toxicology, 2007, 20, 380-387.	1.7	81
7	Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine, 2011, 6, 899-920.	1.7	81
8	Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: the role of crystallinity and surface disorder. Particle and Fibre Toxicology, 2015, 13, 32.	2.8	77
9	Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO ₂ (nano) particles. Occupational and Environmental Medicine, 2016, 73, 110-118.	1.3	76
10	Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica particles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27836-27846.	3.3	76
11	The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity?. Particle and Fibre Toxicology, 2019, 16, 32.	2.8	72
12	The Ironâ€Related Molecular Toxicity Mechanism of Synthetic Asbestos Nanofibres: A Model Study for Highâ€Aspectâ€Ratio Nanoparticles. Chemistry - A European Journal, 2011, 17, 350-358.	1.7	65
13	Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. Journal of Breath Research, 2016, 10, 016004.	1.5	59
14	Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. Journal of Environmental Monitoring, 2005, 7, 764.	2.1	51
15	Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO ₂ production workers. Nanotoxicology, 2017, 11, 52-63.	1.6	51
16	Model System to Study the Influence of Aggregation on the Hemolytic Potential of Silica Nanoparticles. Chemical Research in Toxicology, 2011, 24, 1869-1875.	1.7	48
17	Soil Fungi Reduce the Iron Content and the DNA Damaging Effects of Asbestos Fibers. Environmental Science & Technology, 2006, 40, 5793-5798.	4.6	47
18	A Biomimetic Approach to the Chemical Inactivation of Chrysotile Fibres by Lichen Metabolites. Chemistry - A European Journal, 2007, 13, 4081-4093.	1.7	42

#	Article	IF	CITATIONS
19	Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments. Chemical Engineering Journal, 2017, 310, 307-316.	6.6	42
20	High aspect ratio materials: role of surface chemistry vs. length in the historical "long and short amosite asbestos fibersâ€: Inhalation Toxicology, 2010, 22, 984-998.	0.8	40
21	Weathering of chrysotile asbestos by the serpentine rock-inhabiting fungus Verticillium leptobactrum. FEMS Microbiology Ecology, 2009, 69, 132-141.	1.3	39
22	POTENTIAL TOXICITY OF NONREGULATED ASBESTIFORM MINERALS: BALANGEROITE FROM THE WESTERN ALPS. PART 3: DEPLETION OF ANTIOXIDANT DEFENSES. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2005, 68, 41-49.	1.1	34
23	Surface Iron Inhibits Quartz-Induced Cytotoxic and Inflammatory Responses in Alveolar Macrophages. Chemical Research in Toxicology, 2011, 24, 99-110.	1.7	33
24	Evolution and Reversibility of Host/Guest Interactions with Temperature Changes in a Methyl Red@Palygorskite Polyfunctional Hybrid Nanocomposite. Journal of Physical Chemistry C, 2014, 118, 19322-19337.	1.5	33
25	Impact of the Physicochemical Features of TiO ₂ Nanoparticles on Their <i>In Vitro</i> Toxicity. Chemical Research in Toxicology, 2020, 33, 2324-2337.	1.7	33
26	Rapid purification/oxidation of multi-walled carbon nanotubes under 300 kHz-ultrasound and microwave irradiation. New Journal of Chemistry, 2011, 35, 915.	1.4	31
27	Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Free Radical Biology and Medicine, 2019, 133, 21-37.	1.3	30
28	A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid under power ultrasound. Ultrasonics Sonochemistry, 2008, 15, 420-427.	3.8	29
29	Crystalline Phase Modulates the Potency of Nanometric TiO ₂ to Adhere to and Perturb the Stratum Corneum of Porcine Skin under Indoor Light. Chemical Research in Toxicology, 2013, 26, 1579-1590.	1.7	29
30	Editor's Highlight: Abrasion of Artificial Stones as a New Cause of an Ancient Disease. Physicochemical Features and Cellular Responses. Toxicological Sciences, 2016, 153, 4-17.	1.4	29
31	Hydroxyl radicals and oxidative stress: the dark side of Fe corrosion. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110542.	2.5	29
32	POTENTIAL TOXICITY OF NONREGULATED ASBESTIFORM MINERALS: BALANGEROITE FROM THE WESTERN ALPS. PART 2: OXIDANT ACTIVITY OF THE FIBERS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2005, 68, 21-39.	1.1	28
33	Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases. Journal of Physics: Conference Series, 2013, 429, 012014.	0.3	28
34	Solvent-Free Synthesis of Luminescent Copper(I) Coordination Polymers with Thiourea Derivatives. Crystal Growth and Design, 2015, 15, 2929-2939.	1.4	27
35	Assessment of asbestos exposure during a simulated agricultural activity in the proximity of the former asbestos mine of Balangero, Italy. Journal of Hazardous Materials, 2016, 308, 321-327.	6.5	27
36	Surface reactivity of amphibole asbestos: a comparison between crocidolite and tremolite. Scientific Reports, 2017, 7, 14696.	1.6	27

#	Article	IF	CITATIONS
37	Gallic acid grafting to a ferrimagnetic bioactive glass-ceramic. Journal of Non-Crystalline Solids, 2016, 432, 167-175.	1.5	26
38	Surface alteration mechanism and topochemistry of iron in tremolite asbestos: A step toward understanding the potential hazard of amphibole asbestos. Chemical Geology, 2015, 405, 28-38.	1.4	24
39	The combination of oxalic acid with power ultrasound fully degrades chrysotile asbestos fibres. Journal of Environmental Monitoring, 2007, 9, 1064.	2.1	23
40	The Effect of Weathering on Ecopersistence, Reactivity, and Potential Toxicity of Naturally Occurring Asbestos and Asbestiform Minerals. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 305-314.	1.1	23
41	Dissolution reaction and surface iron speciation of UICC crocidolite in buffered solution at pH 7.4: A combined ICP-OES, XPS and TEM investigation. Geochimica Et Cosmochimica Acta, 2014, 127, 221-232.	1.6	23
42	Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration. Journal of Colloid and Interface Science, 2014, 419, 86-94.	5.0	22
43	Possible Chemical Source of Discrepancy between in Vitro and in Vivo Tests in Nanotoxicology Caused by Strong Adsorption of Buffer Components. Chemical Research in Toxicology, 2015, 28, 87-91.	1.7	22
44	Surface Reactivity and Cell Responses to Chrysotile Asbestos Nanofibers. Chemical Research in Toxicology, 2012, 25, 884-894.	1.7	21
45	Free-Radical Chemistry as a Means to Evaluate Lunar Dust Health Hazard in View of Future Missions to the Moon. Astrobiology, 2015, 15, 371-380.	1.5	21
46	Functionalized nanoporous gold as a new biosensor platform for ultra-low quantitative detection of human serum albumin. Sensors and Actuators B: Chemical, 2019, 288, 460-468.	4.0	21
47	The influence of surface charge and photo-reactivity on skin-permeation enhancer property of nano-TiO2 in ex vivo pig skin model under indoor light. International Journal of Pharmaceutics, 2014, 467, 90-99.	2.6	20
48	Cytotoxicity of fractured quartz on THP-1 human macrophages: role of the membranolytic activity of quartz and phagolysosome destabilization. Archives of Toxicology, 2020, 94, 2981-2995.	1.9	20
49	Preparation and Characterization of Insulin-Loaded Lipid-Based Microspheres Generated by Electrospray. Journal of Dispersion Science and Technology, 2011, 32, 1524-1530.	1.3	19
50	Elimination from wastewater of antibiotics reserved for hospital settings, with a Fenton process based on zero-valent iron. Chemosphere, 2021, 283, 131170.	4.2	19
51	Role of Associated Mineral Fibres in Chrysotile Asbestos Health Effects: The Case of Balangeroite. Annals of Occupational Hygiene, 2009, 53, 491-7.	1.9	18
52	New Detoxification Processes for Asbestos Fibers in the Environment. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 368-377.	1.1	16
53	Ζ potential evidences silanol heterogeneity induced by metal contaminants at the quartz surface: Implications in membrane damage. Colloids and Surfaces B: Biointerfaces, 2017, 157, 449-455.	2.5	16
54	Molecular recognition between membrane epitopes and nearly free surface silanols explains silica membranolytic activity. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112625.	2.5	16

#	Article	IF	CITATIONS
55	Lichen deterioration of asbestos and asbestiform minerals of serpentinite rocks in Western Alps. International Biodeterioration and Biodegradation, 2013, 84, 342-350.	1.9	15
56	Hazard assessment of W and Mo sulphide nanomaterials for automotive use. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	15
57	Microwaveâ€Assisted Synthesis and Physicochemical Characterization of Tetrafuranylporphyrinâ€Grafted Reducedâ€Graphene Oxide. Chemistry - A European Journal, 2016, 22, 1608-1613.	1.7	15
58	LiCoO2 particles used in Li-ion batteries induce primary mutagenicity in lung cells via their capacity to generate hydroxyl radicals. Particle and Fibre Toxicology, 2020, 17, 6.	2.8	15
59	Synthesis of $\hat{I}\pm$ -Quartz with Controlled Properties for the Investigation of the Molecular Determinants in Silica Toxicology. Crystal Growth and Design, 2016, 16, 2394-2403.	1.4	14
60	Thermal inertization of amphibole asbestos modulates Fe topochemistry and surface reactivity. Journal of Hazardous Materials, 2020, 398, 123119.	6.5	13
61	Phototransformation of l-tryptophan and formation of humic substances in water. Environmental Chemistry Letters, 2018, 16, 1035-1041.	8.3	12
62	Innovative unattended SEM-EDS analysis for asbestos fiber quantification. Talanta, 2018, 190, 158-166.	2.9	11
63	Hyphal morphology and substrate porosity -rather than melanization- drive penetration of black fungi into carbonate substrates. Journal of Cultural Heritage, 2021, 48, 244-253.	1.5	11
64	Antioxidant Activity of Silica-Based Bioactive Glasses. ACS Biomaterials Science and Engineering, 2021, 7, 2309-2316.	2.6	11
65	The surface reactivity and implied toxicity of ash produced from sugarcane burning. Environmental Toxicology, 2014, 29, 503-516.	2.1	10
66	Morphological and chemical properties of fibrous antigorite from lateritic deposit of New Caledonia in view of hazard assessment. Science of the Total Environment, 2021, 777, 146185.	3.9	9
67	SWCNT–porphyrin nano-hybrids selectively activated by ultrasound: an interesting model for sonodynamic applications. RSC Advances, 2020, 10, 21736-21744.	1.7	8
68	Chrysotile asbestos migration in air from contaminated water: An experimental simulation. Journal of Hazardous Materials, 2022, 424, 127528.	6.5	8
69	Gallic acid grafting modulates the oxidative potential of ferrimagnetic bioactive glass-ceramic SC-45. Colloids and Surfaces B: Biointerfaces, 2016, 148, 592-599.	2.5	7
70	Identification and Preliminary Toxicological Assessment of a Non-Regulated Mineral Fiber: Fibrous Antigorite from New Caledonia. Environmental and Engineering Geoscience, 2020, 26, 89-97.	0.3	7
71	Portable Raman Spectrometer for In Situ Analysis of Asbestos and Fibrous Minerals. Applied Sciences (Switzerland), 2021, 11, 287.	1.3	7
72	Short Preirradiation of TiO ₂ Nanoparticles Increases Cytotoxicity on Human Lung Coculture System. Chemical Research in Toxicology, 2021, 34, 733-742.	1.7	6

#	ARTICLE	IF	CITATIONS
73	Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production. Journal of Hazardous Materials, 2016, 312, 18-27.	6.5	5
74	Petrofacies for the prediction of NOA content in rocks: application to the "Gronda di Genova― tunneling project. Bulletin of Engineering Geology and the Environment, 2020, 79, 185-204.	1.6	5
75	TGA coupled with FTIR gas analysis to quantify the vinyl alcohol unit content in ethylene-vinyl alcohol copolymer. Materials Letters, 2021, 284, 129030.	1.3	5
76	Design, Realization, and Characterization of Advanced Adhesives for Joining Ultra‧table C/C Based Components. Macromolecular Materials and Engineering, 2020, 305, 2000229.	1.7	3
77	Estimation of natural asbestos content in rocks by fracture network modeling and petrographic characterization. Engineering Geology, 2020, 271, 105566.	2.9	3
78	New Tools for the Evaluation of Asbestos-Related Risk during Excavation in an NOA-Rich Geological Setting. Environmental and Engineering Geoscience, 2020, 26, 113-120.	0.3	2
79	Valorization of MSWI Bottom Ash as a Function of Particle Size Distribution, Using Steam Washing. Sustainability, 2020, 12, 9461.	1.6	2
80	Surface and bulk properties of mineral fibres relevant to toxicity. , 2017, , 171-214.		2
81	Geological Model for Naturally Occurring Asbestos Content Prediction in the Rock Excavation of a Long Tunnel (Gronda di Genova Project, NW Italy). Environmental and Engineering Geoscience, 2020, 26, 107-112.	0.3	1
82	Geological mapping for executive design of civil infrastructures: integration of GIS and AutoCAD informative systems for "Gronda di Genova" highway tunnel. Rendiconti Online Societa Geologica Italiana, 0, 52, 12-18.	0.3	0