Pavel Travnicek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5174947/publications.pdf

Version: 2024-02-01

56 2,147 25 43 papers citations h-index g-index

59 59 59 2060 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon, 2006, 55, 447-450.	0.7	166
2	Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 273-280.	1.5	135
3	Chromosome Numbers and Genome Size Variation in Indian Species of Curcuma (Zingiberaceae). Annals of Botany, 2007, 100, 505-526.	2.9	135
4	Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Annals of Botany, 2009, 103, 963-974.	2.9	125
5	Complex distribution patterns of diâ€, tetraâ€, and hexaploid cytotypes in the European high mountain plant <i>Senecio carniolicus</i> (Asteraceae). American Journal of Botany, 2007, 94, 1391-1401.	1.7	111
6	Genome Size Variation and Species Relationships in Hieracium Sub-genus Pilosella (Asteraceae) as Inferred by Flow Cytometry. Annals of Botany, 2007, 100, 1323-1335.	2.9	98
7	Ploidyâ€specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the <i><scp>G</scp>ymnadenia conopsea</i> group (<scp>O</scp> rchidaceae). New Phytologist, 2013, 199, 1022-1033.	7.3	92
8	Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant) Tj ETQq0 (0 0 <u>rg</u> BT /(Overlock 10 Tf
9	Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. Journal of Plant Research, 2007, 120, 721-725.	2.4	69
10	Invasiveness in introduced Australian acacias: the role of species traits and genome size. Diversity and Distributions, 2011, 17, 884-897.	4.1	64
11	Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant lifeâ€history traits and climatic conditions. New Phytologist, 2019, 224, 1642-1656.	7.3	63
12	Bringing Together Evolution on Serpentine and Polyploidy: Spatiotemporal History of the Diploid-Tetraploid Complex of Knautia arvensis (Dipsacaceae). PLoS ONE, 2012, 7, e39988.	2.5	52
13	High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the Greater Cape Floristic Region. Annals of Botany, 2013, 111, 641-649.	2.9	51
14	Challenges of flowâ€cytometric estimation of nuclear genome size in orchids, a plant group with both wholeâ€genome and progressively partial endoreplication. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 958-966.	1.5	51
15	Estimation of Relative Nuclear DNA Content in Dehydrated Plant Tissues by Flow Cytometry. Current Protocols in Cytometry, 2006, 38, Unit7.30.	3.7	47
16	Genome size discriminates between closely related taxaElytrigia repens andE. intermedia (Poaceae:) Tj ETQq0 0	0 rgBJ /O	verlock 10 Tf 5
17	Bridging global and microregional scales: ploidy distribution in Pilosella echioides (Asteraceae) in central Europe. Annals of Botany, 2011, 107, 443-454.	2.9	43
18	Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity. Annals of Botany, 2012, 110, 977-986.	2.9	39

#	Article	IF	Citations
19	Genome Size as a Key to Evolutionary Complex Aquatic Plants: Polyploidy and Hybridization in Callitriche (Plantaginaceae). PLoS ONE, 2014, 9, e105997.	2.5	36
20	Applicationâ€based guidelines for best practices in plant flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 749-781.	1.5	34
21	Cytotype variation, cryptic diversity and hybridization in Ranunculus sect. Batrachium revealed by flow cytometry and chromosome numbers. Preslia, 2018, 90, 195-223.	2.8	32
22	Species boundaries and frequency of hybridization in the <i>Dryopteris carthusiana</i> (Dryopteridaceae) complex: A taxonomic puzzle resolved using genome size data. American Journal of Botany, 2010, 97, 1208-1219.	1.7	31
23	Allopolyploid origins of the <i>Galeopsis</i> tetraploids – revisiting Müntzing's classical textbook example using molecular tools. New Phytologist, 2011, 191, 1150-1167.	7.3	31
24	Is hybridization involved in the evolution of the Chenopodium album aggregate? An analysis based on chromosome counts and genome size estimation. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 530-540.	1.2	28
25	Flow cytometry, microsatellites and niche models reveal the origins and geographical structure of <i>Alnus glutinosa</i> populations in Europe. Annals of Botany, 2016, 117, 107-120.	2.9	28
26	Genome size variation in Orchidaceae subfamily Apostasioideae: filling the phylogenetic gap. Botanical Journal of the Linnean Society, 2013, 172, 95-105.	1.6	27
27	The large genome size variation in the Hesperis clade was shaped by the prevalent proliferation of DNA repeats and rarer genome downsizing. Annals of Botany, 2019, 124, 103-120.	2.9	26
28	Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids. Annals of Botany, 2014, 113, 159-170.	2.9	25
29	Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae). PLoS ONE, 2015, 10, e0133748.	2.5	24
30	Polyploid evolution: The ultimate way to grasp the nettle. PLoS ONE, 2019, 14, e0218389.	2.5	22
31	Evolutionary dynamics across discontinuous freshwater systems: Rapid expansions and repeated allopolyploid origins in the Palearctic white water–lilies (<i>Nymphaea</i>). Taxon, 2010, 59, 483-494.	0.7	19
32	Genome size stability across EurasianChenopodiumspecies (Amaranthaceae). Botanical Journal of the Linnean Society, 2016, 182, 637-649.	1.6	19
33	The Enigma of Progressively Partial Endoreplication: New Insights Provided by Flow Cytometry and Next-Generation Sequencing. Genome Biology and Evolution, 2016, 8, 1996-2005.	2.5	19
34	Cytotype coexistence in the field cannot be explained by inter-cytotype hybridization alone: linking experiments and computer simulations in the sexual species Pilosella echioides (Asteraceae). BMC Evolutionary Biology, 2017, 17, 87.	3.2	19
35	Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid <i>Aesculus</i> species (Sapindaceae). Annals of Botany, 2017, 119, mcw261.	2.9	17
36	Competition among native and invasive Phragmites australis populations: An experimental test of the effects of invasion status, genome size, and ploidy level. Ecology and Evolution, 2020, 10, 1106-1118.	1.9	16

#	Article	IF	Citations
37	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.5	16
38	DNA ploidy-level variation in native and invasive populations of Lythrum salicaria at a large geographical scale. Journal of Biogeography, 2007, 35, 070901070439003-???.	3.0	14
39	Reduced and unreduced gametes combine almost freely in a multiploidy system. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 18, 15-22.	2.7	13
40	Substantial Genome Size Variation in Taraxacum stenocephalum (Asteraceae, Lactuceae). Folia Geobotanica, 2013, 48, 271-284.	0.9	12
41	Are B-chromosomes responsible for the extraordinary genome size variation in selected Anthoxanthum annuals?. Plant Systematics and Evolution, 2016, 302, 731-738.	0.9	11
42	Induced polyploidization and its influence on yield, morphological, and qualitative characteristics of microtubers in Ullucus tuberosus. Plant Cell, Tissue and Organ Culture, 2012, 109, 83-90.	2.3	10
43	Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. Plant Journal, 2021, 107, 511-524.	5.7	10
44	A New Species of Cleisostoma (Orchidaceae) from the Hon Ba Nature Reserve in Vietnam: A Multidisciplinary Assessment. PLoS ONE, 2016, 11, e0150631.	2.5	8
45	Sweet vernal grasses (<i>Anthoxanthum</i>) colonized African mountains along two fronts in the Late Pliocene, followed by secondary contact, polyploidization and local extinction in the Pleistocene. Molecular Ecology, 2017, 26, 3513-3532.	3.9	8
46	The Mediterranean: the cradle of Anthoxanthum (Poaceae) diploid diversity. Annals of Botany, 2017, 120, 285-302.	2.9	7
47	Patterns, causes and consequences of genome size variation in Restionaceae of the Cape flora. Botanical Journal of the Linnean Society, 2017, 183, 515-531.	1.6	5
48	On the Origin of Tetraploid Vernal Grasses (Anthoxanthum) in Europe. Genes, 2021, 12, 966.	2.4	5
49	Disparity between morphology and genetics in <i>Urtica dioica</i> (Urticaceae). Botanical Journal of the Linnean Society, 2021, 195, 606-621.	1.6	4
50	Integrative Study of Genotypic and Phenotypic Diversity in the Eurasian Orchid Genus Neotinea. Frontiers in Plant Science, 2021, 12, 734240.	3.6	2
51	Patterns of genetic variation in Pilosella echioides and its selected relatives: results of variation in ploidy level, facultative apomixis and past and present hybridization. Plant Systematics and Evolution, 2014, 300, 2091-2104.	0.9	1
52	A new species of Pabstiella (Pleurothallidinae, Orchidaceae) from Ecuador /strong>. Phytotaxa, 2021, 500, 108-116.	0.3	1
53	<p>A new species of Andinia (Pleurothallidinae, Orchidaceae) with unusual bearded flowers from Ecuador</p> . Phytotaxa, 2020, 439, 77-84.	0.3	1
54	The poor cousin: Contrasting patterns of intraspecific variation among co-occurring species of Vaccinium L Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 293, 152103.	1.2	1

#	Article	IF	CITATIONS
55	A new species of Acianthera (Pleurothallidinae, Orchidaceae) from Brazil. Phytotaxa, 2019, 402, 29.	0.3	O
56	TheÂreassessment of Taraxacum pieninicum reveals polyploidy, agamospermy and a substantial range extension. Preslia, 2021, 93, 341-361.	2.8	0