Javier Pérez-RamÃ-rez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5174721/publications.pdf

Version: 2024-02-01

554 papers 46,395 citations

109 h-index 191

632 all docs

632 docs citations

632 times ranked

27642 citing authors

g-index

#	Article	IF	CITATIONS
1	Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, 2003, 60, 1-17.	2.2	1,773
2	Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37, 2530.	18.7	1,601
3	Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy and Environmental Science, 2013, 6, 3112.	15.6	1,475
4	A Stable Singleâ€Site Palladium Catalyst for Hydrogenations. Angewandte Chemie - International Edition, 2015, 54, 11265-11269.	7.2	779
5	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation. Angewandte Chemie - International Edition, 2016, 55, 6261-6265.	7.2	769
6	Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.	23.0	690
7	Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained via Controlled Desilication. Journal of the American Chemical Society, 2007, 129, 355-360.	6.6	616
8	Design of hierarchical zeolite catalysts by desilication. Catalysis Science and Technology, 2011, 1, 879.	2.1	576
9	Desilication: on the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16, 2121-2131.	6.7	519
10	Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 2017, 46, 1358-1426.	18.7	513
11	Formation and control of N2O in nitric acid production. Applied Catalysis B: Environmental, 2003, 44, 117-151.	10.8	509
12	Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO ₂ . Chemical Society Reviews, 2020, 49, 2937-3004.	18.7	479
13	Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent. Chemistry - A European Journal, 2005, 11, 4983-4994.	1.7	473
14	A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 2018, 13, 702-707.	15.6	471
15	Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication. Journal of Physical Chemistry B, 2004, 108, 13062-13065.	1.2	463
16	Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals. Journal of the American Chemical Society, 2005, 127, 10792-10793.	6.6	452
17	Zeolite Catalysts with Tunable Hierarchy Factor by Poreâ€Growth Moderators. Advanced Functional Materials, 2009, 19, 3972-3979.	7.8	446
18	Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature, 2020, 587, 408-413.	13.7	405

#	Article	IF	Citations
19	Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42, 263-290.	18.7	388
20	Electrocatalytic Reduction of Nitrogen: From Haber-Bosch to Ammonia Artificial Leaf. CheM, 2019, 5, 263-283.	5. 8	339
21	On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous and Mesoporous Materials, 2004, 69, 29-34.	2.2	329
22	Towards sustainable fuels and chemicals through the electrochemical reduction of CO ₂ : lessons from water electrolysis. Green Chemistry, 2015, 17, 5114-5130.	4.6	288
23	Hierarchical Y and USY Zeolites Designed by Postâ€Synthetic Strategies. Advanced Functional Materials, 2012, 22, 916-928.	7.8	283
24	Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 53-58.	2.3	279
25	Quantification of enhanced acid site accessibility in hierarchical zeolites – The accessibility index. Journal of Catalysis, 2009, 264, 11-14.	3.1	279
26	Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nature Nanotechnology, 2022, 17, 174-181.	15.6	279
27	Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Applied Catalysis A: General, 2009, 364, 191-198.	2.2	273
28	Strategies to break linear scaling relationships. Nature Catalysis, 2019, 2, 971-976.	16.1	273
29	Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions. Chemical Society Reviews, 2016, 45, 3331-3352.	18.7	271
30	Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nature Communications, 2014, 5, .	5.8	270
31	The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329.	7.2	261
32	Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nature Communications, 2019, 10, 3377.	5.8	261
33	Advances in the Design of Nanostructured Catalysts for Selective Hydrogenation. ChemCatChem, 2016, 8, 21-33.	1.8	260
34	Halogen-Mediated Conversion of Hydrocarbons to Commodities. Chemical Reviews, 2017, 117, 4182-4247.	23.0	260
35	Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis, 2005, 232, 318-334.	3.1	258
36	Stabilization of Single Metal Atoms on Graphitic Carbon Nitride. Advanced Functional Materials, 2017, 27, 1605785.	7.8	249

#	Article	IF	Citations
37	From powder to technical body: the undervalued science of catalyst scale up. Chemical Society Reviews, 2013, 42, 6094.	18.7	244
38	Hierarchical ZSMâ€5 Zeolites in Shapeâ€Selective Xylene Isomerization: Role of Mesoporosity and Acid Site Speciation. Chemistry - A European Journal, 2010, 16, 6224-6233.	1.7	239
39	Catalytic processing of plastic waste on the rise. CheM, 2021, 7, 1487-1533.	5 . 8	236
40	Desilication Mechanism Revisited: Highly Mesoporous Allâ€Silica Zeolites Enabled Through Poreâ€Directing Agents. Chemistry - A European Journal, 2011, 17, 1137-1147.	1.7	235
41	Visualization of hierarchically structured zeolite bodies from macro to nano length scales. Nature Chemistry, 2012, 4, 825-831.	6.6	234
42	Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior. Journal of Catalysis, 2004, 223, 13-27.	3.1	230
43	Full Compositional Flexibility in the Preparation of Mesoporous MFI Zeolites by Desilication. Journal of Physical Chemistry C, 2011, 115, 14193-14203.	1.5	230
44	Mesoporous beta zeolite obtained by desilication. Microporous and Mesoporous Materials, 2008, 114, 93-102.	2.2	229
45	Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10, 804-812.	6.6	221
46	InÂsitu investigation of the thermal decomposition of Co–Al hydrotalcite in different atmospheres. Journal of Materials Chemistry, 2001, 11, 821-830.	6.7	218
47	Ceria in Hydrogenation Catalysis: High Selectivity in the Conversion of Alkynes to Olefins. Angewandte Chemie - International Edition, 2012, 51, 8620-8623.	7.2	218
48	Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide. Journal of Catalysis, 2018, 361, 313-321.	3.1	216
49	Transforming Energy with Single-Atom Catalysts. Joule, 2019, 3, 2897-2929.	11.7	216
50	Aldol Condensations Over Reconstructed Mg-Al Hydrotalcites: Structure-Activity Relationships Related to the Rehydration Method. Chemistry - A European Journal, 2005, 11, 728-739.	1.7	215
51	Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication–dealumination. Microporous and Mesoporous Materials, 2005, 87, 153-161.	2.2	214
52	Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System <i>via</i> Copolymerization with Silver Tricyanomethanide. ACS Nano, 2016, 10, 3166-3175.	7.3	213
53	Preparation, Characterization, and Performance of FeZSM-5 for the Selective Oxidation of Benzene to Phenol with N2O. Journal of Catalysis, 2000, 195, 287-297.	3.1	211
54	Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions \hat{a}^{-1} . Journal of Catalysis, 2007, 251, 21-27.	3.1	211

#	Article	IF	CITATIONS
55	Nanoscale engineering of catalytic materials for sustainable technologies. Nature Nanotechnology, 2021, 16, 129-139.	15.6	210
56	Sulfur-Modified Copper Catalysts for the Electrochemical Reduction of Carbon Dioxide to Formate. ACS Catalysis, 2018, 8, 837-844.	5.5	209
57	Structural analysis of hierarchically organized zeolites. Nature Communications, 2015, 6, 8633.	5.8	206
58	Opposite Face Sensitivity of CeO ₂ in Hydrogenation and Oxidation Catalysis. Angewandte Chemie - International Edition, 2014, 53, 12069-12072.	7.2	199
59	Physicochemical Characterization of Isomorphously Substituted FeZSM-5 during Activation. Journal of Catalysis, 2002, 207, 113-126.	3.1	197
60	The six-flow reactor technology A review on fast catalyst screening and kinetic studies. Catalysis Today, 2000, 60, 93-109.	2.2	194
61	Critical appraisal of mesopore characterization by adsorption analysis. Applied Catalysis A: General, 2004, 268, 121-125.	2.2	194
62	Tailored Mesoporosity Development in Zeolite Crystals by Partial Detemplation and Desilication. Advanced Functional Materials, 2009, 19, 164-172.	7.8	194
63	Scalable Roomâ€Temperature Conversion of Copper(II) Hydroxide into HKUSTâ€1 (Cu ₃ (btc) ₂). Advanced Materials, 2013, 25, 1052-1057.	11.1	189
64	Design of Local Atomic Environments in Singleâ€Atom Electrocatalysts for Renewable Energy Conversions. Advanced Materials, 2021, 33, e2003075.	11.1	187
65	Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2. Journal of Catalysis, 2012, 286, 287-297.	3.1	185
66	Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. Journal of Catalysis, 2010, 273, 92-102.	3.1	182
67	Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 2018, 9, 2634.	5.8	180
68	Sustainable chlorine recycling via catalysed HCl oxidation: from fundamentals to implementation. Energy and Environmental Science, 2011, 4, 4786.	15.6	179
69	Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nature Communications, 2020, 11, 4302.	5.8	179
70	Desilication of ferrierite zeolite for porosity generation and improved effectiveness in polyethylene pyrolysis. Journal of Catalysis, 2009, 265, 170-180.	3.1	177
71	Role of Zirconia in Indium Oxide-Catalyzed CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2020, 10, 1133-1145.	5.5	177
72	Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. Chemical Society Reviews, 2015, 44, 7025-7043.	18.7	175

#	Article	IF	CITATIONS
73	Enhanced Reduction of CO ₂ to CO over Cuâ€"In Electrocatalysts: Catalyst Evolution Is the Key. ACS Catalysis, 2016, 6, 6265-6274.	5.5	170
74	Mechanism of HCl oxidation (Deacon process) over RuO2. Journal of Catalysis, 2008, 255, 29-39.	3.1	169
75	Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. Journal of Catalysis, 2003, 214, 33-45.	3.1	167
76	Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: Triple- versus double-bond activation. Journal of Catalysis, 2007, 247, 383-386.	3.1	167
77	Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned. ACS Catalysis, 2012, 2, 1487-1499.	5.5	163
78	Effects of Binders on the Performance of Shaped Hierarchical MFI Zeolites in Methanol-to-Hydrocarbons. ACS Catalysis, 2014, 4, 2409-2417.	5.5	163
79	Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chemical Society Reviews, 2020, 49, 3764-3782.	18.7	163
80	Environmental and economical perspectives of a glycerol biorefinery. Energy and Environmental Science, 2018, 11, 1012-1029.	15.6	162
81	Alkaline Posttreatment of MFI Zeolites. From Accelerated Screening to Scale-up. Industrial & Scale amp; Engineering Chemistry Research, 2007, 46, 4193-4201.	1.8	161
82	Plant-to-planet analysis of CO ₂ -based methanol processes. Energy and Environmental Science, 2019, 12, 3425-3436.	15.6	160
83	NO-Assisted N2O Decomposition over Fe-Based Catalysts: Effects of Gas-Phase Composition and Catalyst Constitution. Journal of Catalysis, 2002, 208, 211-223.	3.1	156
84	Partial hydrogenation of propyne over copper-based catalysts and comparison with nickel-based analogues. Journal of Catalysis, 2010, 269, 80-92.	3.1	155
85	Cooperative Effects in Ternary Cuâ^'Niâ^'Fe Catalysts Lead to Enhanced Alkene Selectivity in Alkyne Hydrogenation. Journal of the American Chemical Society, 2010, 132, 4321-4327.	6.6	150
86	In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Coâ€"Al and Niâ€"Al hydrotalcites. Vibrational Spectroscopy, 2001, 27, 75-88.	1.2	149
87	Building Blocks for High Performance in Electrocatalytic CO ₂ Reduction: Materials, Optimization Strategies, and Device Engineering. Journal of Physical Chemistry Letters, 2017, 8, 3933-3944.	2.1	147
88	Mesopore Formation in USY and Beta Zeolites by Base Leaching: Selection Criteria and Optimization of Pore-Directing Agents. Crystal Growth and Design, 2012, 12, 3123-3132.	1.4	144
89	Volcano Trend in Electrocatalytic CO ₂ Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon. ACS Catalysis, 2019, 9, 10426-10439.	5.5	142
90	From the Lindlar Catalyst to Supported Ligandâ€Modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuousâ€Flow Threeâ€Phase Hydrogenation of Acetylenic Compounds. Chemistry - A European Journal, 2014, 20, 5926-5937.	1.7	141

#	Article	IF	Citations
91	Mesoporous ZSM-22 zeolite obtained by desilication: peculiarities associated with crystal morphology and aluminium distribution. CrystEngComm, 2011, 13, 3408.	1.3	140
92	New and revisited insights into the promotion of methanol synthesis catalysts by CO2. Catalysis Science and Technology, 2013, 3, 3343.	2.1	139
93	Environmental and economic assessment of lactic acid production from glycerol using cascade bioand chemocatalysis. Energy and Environmental Science, 2015, 8, 558-567.	15.6	134
94	Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Transactions, 2010, 39, 8412.	1.6	133
95	Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. National Science Review, 2018, 5, 642-652.	4.6	132
96	Active site structure sensitivity in N2O conversion over FeMFI zeolites. Journal of Catalysis, 2003, 218, 234-238.	3.1	131
97	Evolution, achievements, and perspectives of the TAP technique. Catalysis Today, 2007, 121, 160-169.	2.2	130
98	A density functional theory study of the †mythic' Lindlar hydrogenation catalyst. Theoretical Chemistry Accounts, 2011, 128, 663-673.	0.5	130
99	Hierarchical FAU―and LTAâ€Type Zeolites by Postâ€Synthetic Design: A New Generation of Highly Efficient Base Catalysts. Advanced Functional Materials, 2013, 23, 1923-1934.	7.8	125
100	Memory Effect of Activated Mg–Al Hydrotalcite: In Situ XRD Studies during Decomposition and Gas-Phase Reconstruction. Chemistry - A European Journal, 2007, 13, 870-878.	1.7	124
101	Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nature Catalysis, 2020, 3, 376-385.	16.1	122
102	Selective Homogeneous and Heterogeneous Gold Catalysis with Alkynes and Alkenes: Similar Behavior, Different Origin. ChemPhysChem, 2008, 9, 1624-1629.	1.0	119
103	Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHxSpecies. Journal of Physical Chemistry C, 2007, 111, 860-868.	1.5	118
104	DFT Characterization of Adsorbed NHx Species on Pt(100) and Pt(111) Surfaces. Journal of Physical Chemistry B, 2005, 109, 18061-18069.	1.2	116
105	Visualizing the Crystal Structure and Locating the Catalytic Activity of Micro―and Mesoporous ZSMâ€5 Zeolite Crystals by Using In Situ Optical and Fluorescence Microscopy. Chemistry - A European Journal, 2008, 14, 1718-1725.	1.7	116
106	Solid-State Chemistry of Cuprous Delafossites: Synthesis and Stability Aspects. Chemistry of Materials, 2013, 25, 4423-4435.	3.2	114
107	Molecular-Level Understanding of CeO ₂ as a Catalyst for Partial Alkyne Hydrogenation. Journal of Physical Chemistry C, 2014, 118, 5352-5360.	1.5	112
108	Reactivity descriptors for ceria in catalysis. Applied Catalysis B: Environmental, 2016, 197, 299-312.	10.8	112

#	Article	IF	CITATIONS
109	An integrated approach to Deacon chemistry on RuO2-based catalysts. Journal of Catalysis, 2012, 285, 273-284.	3.1	111
110	Hydroisomerization of Emerging Renewable Hydrocarbons using Hierarchical Pt/Hâ€ZSMâ€22 Catalyst. ChemSusChem, 2013, 6, 421-425.	3.6	111
111	Design of Single Gold Atoms on Nitrogenâ€Doped Carbon for Molecular Recognition in Alkyne Semiâ€Hydrogenation. Angewandte Chemie - International Edition, 2019, 58, 504-509.	7.2	111
112	Superior Mass Transfer Properties of Technical Zeolite Bodies with Hierarchical Porosity. Advanced Functional Materials, 2014, 24, 209-219.	7.8	108
113	Descriptors for High-Performance Nitrogen-Doped Carbon Catalysts in Acetylene Hydrochlorination. ACS Catalysis, 2018, 8, 1114-1121.	5.5	108
114	Atomâ€byâ€Atom Resolution of Structure–Function Relations over Lowâ€Nuclearity Metal Catalysts. Angewandte Chemie - International Edition, 2019, 58, 8724-8729.	7.2	108
115	Superior performance of ex-framework FeZSM-5 in direct N2O decomposition in tail-gases from nitric acid plants. Chemical Communications, 2001, , 693-694.	2.2	107
116	Pt(100)-Catalyzed Ammonia Oxidation Studied by DFT: Mechanism and Microkinetics. Journal of Physical Chemistry C, 2008, 112, 13554-13562.	1.5	107
117	Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nature Catalysis, 2022, 5, 545-554.	16.1	107
118	Highly Selective Lewis Acid Sites in Desilicated MFI Zeolites for Dihydroxyacetone Isomerization to Lactic Acid. ChemSusChem, 2013, 6, 831-839.	3.6	105
119	Porosity–Acidity Interplay in Hierarchical ZSMâ€5 Zeolites for Pyrolysis Oil Valorization to Aromatics. ChemSusChem, 2015, 8, 3283-3293.	3.6	105
120	Ex-framework FeZSM-5 for control of N2O in tail-gases. Catalysis Today, 2002, 76, 55-74.	2.2	104
121	Palladium Nanoparticles Supported on Magnetic Carbonâ€Coated Cobalt Nanobeads: Highly Active and Recyclable Catalysts for Alkene Hydrogenation. Advanced Functional Materials, 2014, 24, 2020-2027.	7.8	102
122	Biomass valorisation over polyoxometalate-based catalysts. Green Chemistry, 2021, 23, 18-36.	4.6	101
123	Active iron sites associated with the reaction mechanism of N2O conversions over steam-activated FeMFI zeolites. Journal of Catalysis, 2004, 227, 512-522.	3.1	100
124	Prospects of N2O emission regulations in the European fertilizer industry. Applied Catalysis B: Environmental, 2007, 70, 31-35.	10.8	100
125	Modeling the high-temperature catalytic partial oxidation of methane over platinum gauze: Detailed gas-phase and surface chemistries coupled with 3D flow field simulations. Applied Catalysis A: General, 2006, 303, 166-176.	2.2	99
126	Interdependence between porosity, acidity, and catalytic performance in hierarchical ZSM-5 zeolites prepared by post-synthetic modification. Journal of Catalysis, 2013, 308, 398-407.	3.1	99

#	Article	IF	CITATIONS
127	Hierarchical Sn-MFI zeolites prepared by facile top-down methods for sugar isomerisation. Catalysis Science and Technology, 2014, 4, 2302.	2.1	99
128	Green Synthesis of Hierarchical Metal–Organic Framework/Wood Functional Composites with Superior Mechanical Properties. Advanced Science, 2020, 7, 1902897.	5 . 6	99
129	NO Adsorption on Ex-Framework [Fe,X]MFI Catalysts: Novel IR Bands and Evaluation of Assignments. Catalysis Letters, 2002, 80, 129-138.	1.4	97
130	Highly active SO2-resistant ex-framework FeMFI catalysts for direct N2O decomposition. Applied Catalysis B: Environmental, 2002, 35, 227-234.	10.8	96
131	Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. Journal of Catalysis, 2010, 276, 141-151.	3.1	95
132	Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication. Microporous and Mesoporous Materials, 2012, 148, 115-121.	2.2	95
133	Surface and Pore Structure Assessment of Hierarchical MFI Zeolites by Advanced Water and Argon Sorption Studies. Journal of Physical Chemistry C, 2012, 116, 18816-18823.	1.5	94
134	The role of Br $ ilde{A}$, nsted acidity in the SCR of NO over Fe-MFI catalysts. Microporous and Mesoporous Materials, 2008, 111, 124-133.	2.2	93
135	Hierarchical Silicoaluminophosphates by Postsynthetic Modification: Influence of Topology, Composition, and Silicon Distribution. Chemistry of Materials, 2014, 26, 4552-4562.	3.2	91
136	Catalyst design for natural-gas upgrading through oxybromination chemistry. Nature Chemistry, 2016, 8, 803-809.	6.6	91
137	Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation. Nature Communications, 2021, 12, 1960.	5.8	90
138	Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds. Applied Catalysis B: Environmental, 1999, 23, 59-72.	10.8	88
139	Silver Nanoparticles for Olefin Production: New Insights into the Mechanistic Description of Propyne Hydrogenation. ChemCatChem, 2013, 5, 3750-3759.	1.8	88
140	Study of alkaline-doping agents on the performance of reconstructed Mg–Al hydrotalcites in aldol condensations. Applied Catalysis A: General, 2005, 281, 191-198.	2.2	87
141	Solventâ€Mediated Reconstruction of the Metal–Organic Framework HKUSTâ€1 (Cu ₃ (BTC) ₂). Advanced Functional Materials, 2014, 24, 3855-3865.	7.8	87
142	Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth, 2021, 4, 565-583.	3.6	87
143	Heading to Distributed Electrocatalytic Conversion of Small Abundant Molecules into Fuels, Chemicals, and Fertilizers. Joule, 2019, 3, 2602-2621.	11.7	86
144	In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nature Chemistry, 2012, 4, 739-745.	6.6	85

#	Article	IF	CITATIONS
145	Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene. Journal of Catalysis, 2008, 259, 85-95.	3.1	84
146	Properties and Functions of Hierarchical Ferrierite Zeolites Obtained by Sequential Post-Synthesis Treatments. Chemistry of Materials, 2010, 22, 4679-4689.	3.2	84
147	Expanding the Horizons of Hierarchical Zeolites: Beyond Laboratory Curiosity towards Industrial Realization. ChemCatChem, 2011, 3, 1731-1734.	1.8	84
148	Mesoporous zeolites as enzyme carriers: Synthesis, characterization, and application in biocatalysis. Catalysis Today, 2011, 168, 28-37.	2.2	84
149	Impact of Pore Connectivity on the Design of Longâ€Lived Zeolite Catalysts. Angewandte Chemie - International Edition, 2015, 54, 1591-1594.	7.2	84
150	Prospectives for bio-oil upgrading via esterification over zeolite catalysts. Catalysis Today, 2014, 235, 176-183.	2.2	83
151	Tailoring the framework composition of carbon nitride to improve the catalytic efficiency of the stabilised palladium atoms. Journal of Materials Chemistry A, 2017, 5, 16393-16403.	5.2	83
152	Nanoplatelet-based reconstructed hydrotalcites: towards more efficient solid base catalysts in aldol condensations. Chemical Communications, 2005, , 1453-1455.	2.2	82
153	Evidence of the vital role of the pore network on various catalytic conversions of N2O over Fe-silicalite and Fe-SBA-15 with the same iron constitution. Applied Catalysis B: Environmental, 2006, 62, 244-254.	10.8	82
154	Semihydrogenation of Acetylene on Indium Oxide: Proposed Singleâ€Ensemble Catalysis. Angewandte Chemie - International Edition, 2017, 56, 10755-10760.	7.2	82
155	Hydroisomerization and hydrocracking of linear and multibranched long model alkanes on hierarchical Pt/ZSM-22 zeolite. Catalysis Today, 2013, 218-219, 135-142.	2.2	81
156	Towards a Sustainable Manufacture of Hierarchical Zeolites. ChemSusChem, 2014, 7, 753-764.	3.6	81
157	Structure and Reactivity of Supported Hybrid Platinum Nanoparticles for the Flow Hydrogenation of Functionalized Nitroaromatics. ACS Catalysis, 2015, 5, 3767-3778.	5.5	81
158	Extending Accurate Time Distribution and Timeliness Capabilities Over the Air to Enable Future Wireless Industrial Automation Systems. Proceedings of the IEEE, 2019, 107, 1132-1152.	16.4	81
159	Periodic DFT Study of the Structural and Electronic Properties of Bulk CoAl2O4Spinel. Journal of Physical Chemistry B, 2006, 110, 988-995.	1.2	80
160	Shaped RuO ₂ /SnO ₂ –Al ₂ O ₃ Catalyst for Largeâ€Scale Stable Cl ₂ Production by HCl Oxidation. ChemCatChem, 2011, 3, 657-660.	1.8	80
161	Deactivation mechanisms of tin-zeolites in biomass conversions. Green Chemistry, 2016, 18, 1249-1260.	4.6	80
162	Selectivity-directing factors of ammonia oxidation over PGM gauzes in the Temporal Analysis of Products reactor: Primary interactions of NH3 and O2. Journal of Catalysis, 2004, 227, 90-100.	3.1	78

#	Article	IF	Citations
163	Gas-Phase Oxidation of Glycerol to Dihydroxyacetone over Tailored Iron Zeolites. ACS Catalysis, 2015, 5, 1453-1461.	5.5	78
164	Zinc-Rich Copper Catalysts Promoted by Gold for Methanol Synthesis. ACS Catalysis, 2015, 5, 5607-5616.	5 . 5	78
165	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation. Angewandte Chemie, 2016, 128, 6369-6373.	1.6	78
166	Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand. Angewandte Chemie - International Edition, 2017, 56, 1775-1779.	7.2	78
167	Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Reviews Materials, 2021, 6, 969-985.	23.3	78
168	Hierarchical high-silica zeolites as superior base catalysts. Chemical Science, 2014, 5, 677-684.	3.7	77
169	Mechanism and Kinetics of Direct N2O Decomposition over Feâ^'MFI Zeolites with Different Iron Speciation from Temporal Analysis of Products. Journal of Physical Chemistry B, 2006, 110, 22586-22595.	1.2	76
170	Mesoporous ZSM-5 zeolites prepared by a two-step route comprising sodium aluminate and acid treatments. Microporous and Mesoporous Materials, 2010, 128, 91-100.	2.2	76
171	Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination. Chemical Science, 2019, 10, 359-369.	3.7	76
172	Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene. Applied Catalysis B: Environmental, 2001, 30, 399-408.	10.8	74
173	Hierarchical Zeolites by Desilication: Occurrence and Catalytic Impact of Recrystallization and Restructuring. Crystal Growth and Design, 2013, 13, 5025-5035.	1.4	74
174	Hierarchy Brings Function: Mesoporous Clinoptilolite and L Zeolite Catalysts Synthesized by Tandem Acid–Base Treatments. Chemistry of Materials, 2013, 25, 1947-1959.	3.2	74
175	Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. Journal of Catalysis, 2016, 343, 266-277.	3.1	73
176	Ammonia Dissociation on Pt{100}, Pt{111}, and Pt{211}:  A Comparative Density Functional Theory Study. Journal of Physical Chemistry C, 2007, 111, 17551-17557.	1.5	72
177	Towards more efficient monodimensional zeolite catalysts: n-alkane hydro-isomerisation on hierarchical ZSM-22. Catalysis Science and Technology, 2011, 1, 1331.	2.1	72
178	CuCrO ₂ Delafossite: A Stable Copper Catalyst for Chlorine Production. Angewandte Chemie - International Edition, 2013, 52, 9772-9775.	7.2	72
179	Interplay of Properties and Functions upon Introduction of Mesoporosity in ITQâ€4 Zeolite. Advanced Functional Materials, 2010, 20, 1441-1450.	7.8	69
180	Stability, reutilization, and scalability of activated hydrotalcites in aldol condensation. Applied Catalysis A: General, 2008, 342, 119-125.	2.2	68

#	Article	IF	CITATIONS
181	New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy. Catalysis Science and Technology, 2020, 10, 1975-1990.	2.1	67
182	Perovskite Membranes in Ammonia Oxidation: Towards Process Intensification in Nitric Acid Manufacture. Angewandte Chemie - International Edition, 2005, 44, 1112-1115.	7.2	66
183	Mechanism–Performance Relationships of Metal Oxides in Catalyzed HCl Oxidation. ACS Catalysis, 2011, 1, 583-590.	5.5	66
184	Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. Matter, 2021, 4, 3049-3066.	5.0	66
185	Catalyst performance testing: bed dilution revisited. Chemical Engineering Science, 2002, 57, 4921-4932.	1.9	65
186	Imagination has no limits. Nature Chemistry, 2012, 4, 250-251.	6.6	65
187	Promoted ceria catalysts for alkyne semi-hydrogenation. Journal of Catalysis, 2015, 324, 69-78.	3.1	65
188	Decoupling porosity and compositional effects on desilicated ZSM-5 zeolites for optimal alkylation performance. Catalysis Science and Technology, 2012, 2, 759.	2.1	64
189	Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. Catalysis Science and Technology, 2013, 3, 972.	2.1	64
190	Supported CeO2 catalysts in technical form for sustainable chlorine production. Applied Catalysis B: Environmental, 2013, 132-133, 123-131.	10.8	64
191	Towards Liquid Fuels from Biosyngas: Effect of Zeolite Structure in Hierarchicalâ€Zeoliteâ€Supported Cobalt Catalysts. ChemSusChem, 2013, 6, 1646-1650.	3.6	64
192	Operando Synchrotron Xâ€ray Powder Diffraction and Modulatedâ€Excitation Infrared Spectroscopy Elucidate the CO ₂ Promotion on a Commercial Methanol Synthesis Catalyst. Angewandte Chemie - International Edition, 2016, 55, 11031-11036.	7.2	64
193	Techno-Economic Analysis of a Glycerol Biorefinery. ACS Sustainable Chemistry and Engineering, 2018, 6, 16563-16572.	3.2	64
194	Temporal Analysis of Products Study of HCl Oxidation on Copper- and Ruthenium-Based Catalysts. Journal of Physical Chemistry C, 2011, 115, 1056-1063.	1.5	62
195	A quantitative roadmap for China towards carbon neutrality in 2060 using methanol and ammonia as energy carriers. IScience, 2021, 24, 102513.	1.9	62
196	Quantifying the Complex Pore Architecture of Hierarchical Faujasite Zeolites and the Impact on Diffusion. Advanced Functional Materials, 2016, 26, 5621-5630.	7.8	61
197	NO-Assisted N2O Decomposition over ex-Framework FeZSM-5: Mechanistic Aspects. Catalysis Letters, 2001, 77, 7-13.	1.4	60
198	Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nature Communications, 2018, 9, 1477.	5.8	60

#	Article	IF	CITATIONS
199	Influence of the Divalent Cation on the Thermal Activation and Reconstruction of Hydrotalcite-like Compounds. Journal of Physical Chemistry C, 2007, 111, 3642-3650.	1.5	59
200	A continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green Chemistry, 2014, 16, 1176-1186.	4.6	59
201	Deoxygenation of bio-oil over solid base catalysts: From model to realistic feeds. Applied Catalysis B: Environmental, 2016, 184, 77-86.	10.8	59
202	Atomic Pd-promoted ZnZrO solid solution catalyst for CO2 hydrogenation to methanol. Applied Catalysis B: Environmental, 2022, 304, 120994.	10.8	59
203	Mechanism of ammonia oxidation over oxides studied by temporal analysis of products. Journal of Catalysis, 2007, 250, 240-246.	3.1	58
204	On the location, strength and accessibility of Brønsted acid sites in hierarchical ZSM-5 particles. Catalysis Today, 2012, 198, 3-11.	2.2	58
205	Interfacial acidity in ligand-modified ruthenium nanoparticles boosts the hydrogenation of levulinic acid to gamma-valerolactone. Green Chemistry, 2017, 19, 2361-2370.	4.6	58
206	Role of Carbonaceous Supports and Potassium Promoter on Higher Alcohols Synthesis over Copper–Iron Catalysts. ACS Catalysis, 2018, 8, 9604-9618.	5.5	58
207	On the stability of the thermally decomposed Co-Al hydrotalcite against retrotopotactic transformation. Materials Research Bulletin, 2001, 36, 1767-1775.	2.7	57
208	Decomposition of N2O over Hexaaluminate Catalysts. Environmental Science & Env	4.6	57
209	Origin of the Selective Electroreduction of Carbon Dioxide to Formate by Chalcogen Modified Copper. Journal of Physical Chemistry Letters, 2018, 9, 7153-7159.	2.1	57
210	Electrochemical Reduction of Carbon Dioxide to 1â€Butanol on Oxideâ€Derived Copper. Angewandte Chemie - International Edition, 2020, 59, 21072-21079.	7.2	57
211	Tuning Nanomaterials' Characteristics by a Miniaturized In-Line Dispersion–PrecipitationÂMethod: Application to Hydrotalcite Synthesis. Advanced Materials, 2006, 18, 2436-2439.	11.1	56
212	Formation of Uniform Mesopores in ZSM-5 Zeolite upon Alkaline Post-treatment?. Chemistry Letters, 2002, 31, 94-95.	0.7	55
213	On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts. Journal of Catalysis, 2003, 218, 111-122.	3.1	55
214	Bifunctional Cu/H-ZSM-5 zeolite with hierarchical porosity for hydrocarbon abatement under cold-start conditions. Applied Catalysis B: Environmental, 2014, 154-155, 161-170.	10.8	54
215	Aldol condensation of campholenic aldehyde and MEK over activated hydrotalcites. Applied Catalysis B: Environmental, 2007, 70, 577-584.	10.8	53
216	Preserved in a Shell: Highâ€Performance Grapheneâ€Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination. Angewandte Chemie - International Edition, 2019, 58, 12297-12304.	7.2	53

#	Article	IF	Citations
217	A generalized machine learning framework to predict the space-time yield of methanol from thermocatalytic CO2 hydrogenation. Applied Catalysis B: Environmental, 2022, 315, 121530.	10.8	53
218	Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply. Journal of Catalysis, 2011, 278, 167-172.	3.1	52
219	HCl Oxidation on IrO ₂ -Based Catalysts: From Fundamentals to Scale-Up. ACS Catalysis, 2013, 3, 2813-2822.	5 . 5	52
220	Operando Synchrotron Xâ€ray Powder Diffraction and Modulatedâ€Excitation Infrared Spectroscopy Elucidate the CO ₂ Promotion on a Commercial Methanol Synthesis Catalyst. Angewandte Chemie, 2016, 128, 11197-11202.	1.6	51
221	Selectivity-directing factors of ammonia oxidation over PGM gauzes in the Temporal Analysis of Products reactor: Secondary interactions of NH3 and NO. Journal of Catalysis, 2005, 229, 303-313.	3.1	50
222	Mechanistic origin of the different activity of Rh-ZSM-5 and Fe-ZSM-5 in N2O decomposition. Journal of Catalysis, 2008, 256, 248-258.	3.1	50
223	A delafossite-based copper catalyst for sustainable Cl2 production by HCl oxidation. Chemical Communications, 2011, 47, 7173.	2.2	50
224	Stereo―and Chemoselective Character of Supported CeO ₂ Catalysts for Continuousâ€Flow Threeâ€Phase Alkyne Hydrogenation. ChemCatChem, 2014, 6, 1928-1934.	1.8	50
225	Catalytic Oxychlorination versus Oxybromination for Methane Functionalization. ACS Catalysis, 2017, 7, 1805-1817.	5.5	50
226	On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. Biomass Conversion and Biorefinery, 2017, 7, 331-342.	2.9	50
227	Impact of the preparation method and iron impurities in Fe-ZSM-5 zeolites for propylene production via oxidative dehydrogenation of propane with N2O. Applied Catalysis A: General, 2005, 279, 117-123.	2.2	49
228	In situ monitoring of desilication of MFI-type zeolites in alkaline medium. Physical Chemistry Chemical Physics, 2007, 9, 4822.	1.3	49
229	Room-temperature synthesis of Fe–BTC from layered iron hydroxides: the influence of precursor organisation. CrystEngComm, 2013, 15, 9885.	1.3	49
230	Kinetic aspects and deactivation behaviour of chromia-based catalysts in hydrogen chloride oxidation. Catalysis Science and Technology, 2012, 2, 2057.	2.1	48
231	Mechanism of ammonia oxidation over PGM (Pt, Pd, Rh) wires by temporal analysis of products and density functional theory. Journal of Catalysis, 2009, 261, 217-223.	3.1	47
232	Understanding CeO2 as a Deacon catalyst by probe molecule adsorption and in situ infrared characterisations. Physical Chemistry Chemical Physics, 2013, 15, 3454.	1.3	47
233	Hydroxyapatite, an exceptional catalyst for the gas-phase deoxygenation of bio-oil by aldol condensation. Green Chemistry, 2014, 16, 4870-4874.	4.6	47
234	Solvothermallyâ€Prepared Cu ₂ O Electrocatalysts for CO ₂ Reduction with Tunable Selectivity by the Introduction of pâ€Block Elements. ChemSusChem, 2017, 10, 1255-1265.	3.6	47

#	Article	IF	CITATIONS
235	Enhanced Baseâ€Free Formic Acid Production from CO ₂ on Pd/gâ€C ₃ N ₄ by Tuning of the Carrier Defects. ChemSusChem, 2018, 11, 2859-2869.	3.6	47
236	Characterization and performance of Pt-USY in the SCR of NOx with hydrocarbons under lean-burn conditions. Applied Catalysis B: Environmental, 2001, 29, 285-298.	10.8	46
237	Design of a technical Mg–Al mixed oxide catalyst for the continuous manufacture of glycerol carbonate. Journal of Materials Chemistry A, 2017, 5, 16200-16211.	5.2	46
238	Mechanism and kinetics of the selective NO reduction over Co-ZSM-5 studied by the SSITKA technique2. Reactivity of NOx-adsorbed species with methane. Journal of Catalysis, 2004, 225, 179-189.	3.1	45
239	Depleted uranium catalysts for chlorine production. Chemical Science, 2013, 4, 2209.	3.7	45
240	Rediscovering zeolite mechanochemistry – A pathway beyond current synthesis and modification boundaries. Microporous and Mesoporous Materials, 2014, 194, 106-114.	2.2	45
241	Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. Catalysis Science and Technology, 2016, 6, 1621-1631.	2.1	45
242	N2O-mediated propane oxidative dehydrogenation over steam-activated iron zeolites. Journal of Catalysis, 2004, 223, 382-388.	3.1	44
243	Aluminum Redistribution during the Preparation of Hierarchical Zeolites by Desilication. Chemistry - A European Journal, 2015, 21, 14156-14164.	1.7	44
244	Towards sustainable manufacture of epichlorohydrin from glycerol using hydrotalcite-derived basic oxides. Green Chemistry, 2018, 20, 148-159.	4.6	44
245	Catalyst performance testing: the influence of catalyst bed dilution on the conversion observed. Chemical Engineering Journal, 2002, 90, 173-183.	6.6	43
246	Catalytic reduction of N2O over steam-activated FeZSM-5 zeolite. Applied Catalysis B: Environmental, 2007, 70, 335-341.	10.8	43
247	Toward Functional Clathrasils: Size―and Compositionâ€Controlled Octadecasil Nanocrystals by Desilication. Angewandte Chemie - International Edition, 2008, 47, 7913-7917.	7.2	43
248	Accelerated generation of intracrystalline mesoporosity in zeolites by microwave-mediated desilication. Physical Chemistry Chemical Physics, 2009, 11, 2959.	1.3	43
249	Optimal 3-D Landmark Placement for Vehicle Localization Using Heterogeneous Sensors. IEEE Transactions on Vehicular Technology, 2013, 62, 2987-2999.	3.9	43
250	Dual-bed catalytic system for NOx–N2O removal: a practical application for lean-burn deNOx HC-SCR. Applied Catalysis B: Environmental, 2000, 25, 191-203.	10.8	42
251	Do observations on surface coverage-reactivity correlations always describe the true catalytic process? A case study on ceria. Journal of Catalysis, 2013, 297, 119-127.	3.1	42
252	Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation. Green Chemistry, 2014, 16, 589-593.	4.6	42

#	Article	IF	Citations
253	Design of Hierarchical Zeolite Catalysts for the Manufacture of Polyurethane Intermediates. ACS Catalysis, 2015, 5, 734-743.	5.5	42
254	Olefins from Natural Gas by Oxychlorination. Angewandte Chemie - International Edition, 2017, 56, 13670-13674.	7.2	42
255	Effect of NO on the SCR of N2O with propane over Fe-zeolites. Applied Catalysis B: Environmental, 2004, 47, 177-187.	10.8	41
256	Activity of commercial zeolites with iron impurities in direct N2O decomposition. Applied Catalysis B: Environmental, 2006, 65, 163-167.	10.8	41
257	Metal-substituted hexaaluminates for high-temperature N2O abatement. Chemical Communications, 2007, , $619-621$.	2.2	41
258	Synthesis of Dimethyl Carbonate by Transesterification of Ethylene Carbonate over Activated Dawsonites. ChemSusChem, 2009, 2, 301-304.	3.6	41
259	Unified Method for the Total Pore Volume and Pore Size Distribution of Hierarchical Zeolites from Argon Adsorption and Mercury Intrusion. Langmuir, 2015, 31, 1242-1247.	1.6	41
260	Evidence of radical chemistry in catalytic methane oxybromination. Nature Catalysis, 2018, 1, 363-370.	16.1	41
261	Iron site modification upon alkaline treatment of Fe-ZSM-5 zeolitesâ€"Opportunities for improved N2O decomposition activity. Journal of Catalysis, 2006, 243, 212-216.	3.1	40
262	Design of Base Zeolite Catalysts by Alkali-Metal Grafting in Alcoholic Media. ACS Catalysis, 2015, 5, 5388-5396.	5.5	40
263	Mechanochemically Activated, Calcium Oxideâ€Based, Magnesium Oxideâ€Stabilized Carbon Dioxide Sorbents. ChemSusChem, 2016, 9, 2380-2390.	3.6	40
264	Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catalysis Science and Technology, 2017, 7, 64-74.	2.1	40
265	Tailoring Nitrogenâ€Doped Carbons as Hosts for Singleâ€Atom Catalysts. ChemCatChem, 2019, 11, 2812-2820.	1.8	40
266	Status and prospects of the decentralised valorisation of natural gas into energy and energy carriers. Chemical Society Reviews, 2021, 50, 2984-3012.	18.7	40
267	Steam-activated FeMFI zeolites as highly efficient catalysts for propane and N2O valorisation via oxidative conversions. Chemical Communications, 2003, , 2152-2153.	2.2	39
268	Reforming Dawsonite by Memory Effect of AACH-Derived Aluminas. Chemistry of Materials, 2007, 19, 4783-4790.	3.2	39
269	Industrial RuO ₂ â€Based Deacon Catalysts: Carrier Stabilization and Active Phase Content Optimization. ChemCatChem, 2013, 5, 748-756.	1.8	39
270	Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale, 2014, 6, 13476-13482.	2.8	39

#	Article	IF	CITATIONS
271	Gallium-modified zeolites for the selective conversion of bio-based dihydroxyacetone into C1–C4 alkyl lactates. Journal of Molecular Catalysis A, 2014, 388-389, 141-147.	4.8	39
272	Laser-Microstructured Copper Reveals Selectivity Patterns in the Electrocatalytic Reduction of CO2. CheM, 2020, 6, 1707-1722.	5.8	39
273	Tunable Catalytic Performance of Palladium Nanoparticles for H ₂ O ₂ Direct Synthesis via Surface-Bound Ligands. ACS Catalysis, 2020, 10, 5202-5207.	5.5	39
274	Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination. Nature Nanotechnology, 2022, 17, 606-612.	15.6	39
275	Theoretical Studies of N2O Adsorption and Reactivity to N2and NO on Rh(111). Journal of Physical Chemistry B, 2004, 108, 17921-17927.	1.2	38
276	Discriminating Reasons for Selectivity Enhancement of CO in Alkyne Hydrogenation on Palladium. Journal of Physical Chemistry C, 2008, 112, 9346-9350.	1.5	38
277	Mesoporous metallosilicate zeolites by desilication: On the generic pore-inducing role of framework trivalent heteroatoms. Materials Letters, 2009, 63, 1037-1040.	1.3	38
278	Na-dawsonite derived aluminates for DMC production by transesterification of ethylene carbonate. Applied Catalysis A: General, 2009, 365, 252-260.	2.2	38
279	Hierarchically Structured Zeolite Bodies: Assembling Microâ€, Mesoâ€, and Macroporosity Levels in Complex Materials with Enhanced Properties. Advanced Functional Materials, 2012, 22, 2509-2518.	7.8	38
280	The Virtue of Defects: Stable Bromine Production by Catalytic Oxidation of Hydrogen Bromide on Titanium Oxide. Angewandte Chemie - International Edition, 2014, 53, 8628-8633.	7.2	38
281	Lanthanide compounds as catalysts for the one-step synthesis of vinyl chloride from ethylene. Journal of Catalysis, 2016, 344, 524-534.	3.1	38
282	Hierarchical NaY Zeolites for Lactic Acid Dehydration to Acrylic Acid. ChemCatChem, 2016, 8, 1507-1514.	1.8	38
283	Recent Progress in Materials Exploration for Thermocatalytic, Photocatalytic, and Integrated Photothermocatalytic CO ₂ â€toâ€Fuel Conversion. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	38
284	High-throughput experimentation in catalyst testing and in kinetic studies for heterogeneous catalysis. Catalysis Today, 2003, 81, 457-471.	2.2	37
285	Micro-kinetic analysis of direct N2O decomposition over steam-activated Fe-silicalite from transient experiments in the TAP reactor. Catalysis Today, 2007, 121, 197-203.	2.2	37
286	Assessment of the low-temperature EnviNOx \hat{A}^{\otimes} variant for catalytic N2O abatement over steam-activated FeZSM-5. Applied Catalysis B: Environmental, 2008, 77, 248-254.	10.8	37
287	Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand. Angewandte Chemie, 2017, 129, 1801-1805.	1.6	36
288	Die facettenreiche Reaktivitäheterogener Einzelatomâ€Katalysatoren. Angewandte Chemie, 2018, 130, 15538-15552.	1.6	36

#	Article	IF	CITATIONS
289	Carrierâ€Induced Modification of Palladium Nanoparticles on Porous Boron Nitride for Alkyne Semiâ€Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19639-19644.	7.2	36
290	A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites. Journal of Materials Chemistry, 2001, 11, 2529-2536.	6.7	35
291	Lanthanum ferrite membranes in ammonia oxidation. Catalysis Today, 2005, 105, 436-442.	2.2	35
292	Accelerated study of the citral–acetone condensation kinetics over activated Mg–Al hydrotalcite. Applied Catalysis A: General, 2007, 325, 121-129.	2.2	35
293	Deactivation and regeneration of iron-containing MFI zeolites in propane oxidative dehydrogenation by N2O. Journal of Catalysis, 2007, 249, 123-133.	3.1	35
294	When catalyst meets reactor: continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. Catalysis Science and Technology, 2015, 5, 142-149.	2.1	35
295	Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nature Communications, 2021, 12, 4016.	5. 8	35
296	Direct Conversion of Polypropylene into Liquid Hydrocarbons on Carbonâ€Supported Platinum Catalysts. ChemSusChem, 2021, 14, 5179-5185.	3.6	35
297	Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites. Journal of Catalysis, 2015, 330, 93-105.	3.1	34
298	Structure and reactivity of ceria–zirconia catalysts for bromine and chlorine production via the oxidation of hydrogen halides. Journal of Catalysis, 2015, 331, 128-137.	3.1	34
299	Single atom catalysis. Catalysis Science and Technology, 2017, 7, 4248-4249.	2.1	34
300	Sustainable Continuous Flow Valorization of γâ€Valerolactone with Trioxane to αâ€Methyleneâ€Î³â€Valerolactone over Basic Beta Zeolites. ChemSusChem, 2019, 12, 2628-2636.	3.6	34
301	Process modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels. Reaction Chemistry and Engineering, 2021, 6, 1179-1194.	1.9	34
302	Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In ₂ O ₃ â€Catalyzed CO ₂ Hydrogenation. Advanced Energy Materials, 2022, 12, .	10.2	34
303	Catalytic conversion of N2O over FeZSM-5 zeolite in the presence of CO and NO. Applied Catalysis B: Environmental, 2004, 54, 115-123.	10.8	33
304	N2O Decomposition over Liquid Ion-Exchanged Fe-BEA Catalysts: Correlation Between Activity and the IR Intensity of Adsorbed NO at 1874 cm-1. Catalysis Letters, 2004, 93, 113-120.	1.4	33
305	Structure and catalytic processes of N-containing species on $Rh(111)$ from first principles. Journal of Catalysis, 2005, 232, 179-185.	3.1	33
306	Transient studies on the mechanism of N2O activation and reaction with CO and C3H8 over Fe-silicalite. Journal of Catalysis, 2005, 233, 442-452.	3.1	33

#	Article	IF	CITATIONS
307	Carbon-templated hexaaluminates with enhanced surface area and catalytic performance. Journal of Catalysis, 2008, 257, 152-162.	3.1	33
308	Automated Image Analysis for Single-Atom Detection in Catalytic Materials by Transmission Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 8018-8029.	6.6	33
309	Importance of the lifetime of oxygen species generated by N2O decomposition for hydrocarbon activation over Fe-silicalite. Applied Catalysis B: Environmental, 2006, 64, 35-41.	10.8	32
310	Epoxidation catalysts derived from aluminium and gallium dawsonites. Applied Catalysis A: General, 2009, 371, 43-53.	2.2	32
311	Glycerol oxidehydration to pyruvaldehyde over silver-based catalysts for improved lactic acid production. Green Chemistry, 2016, 18, 4682-4692.	4.6	32
312	Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nature Catalysis, 2022, 5, 605-614.	16.1	32
313	Silver nanoparticles supported on passivated silica: preparation and catalytic performance in alkyne semi-hydrogenation. Dalton Transactions, 2014, 43, 15138-15142.	1.6	31
314	Tunability and Scalability of Single-Atom Catalysts Based on Carbon Nitride. ACS Sustainable Chemistry and Engineering, 2019, 7, 5223-5230.	3.2	31
315	Steam activation of Mg–Al hydrotalcite. Influence on the properties of the derived mixed oxides. Microporous and Mesoporous Materials, 2006, 96, 102-108.	2.2	30
316	Environmental and economic assessment of glycerol oxidation to dihydroxyacetone over technical iron zeolite catalysts. Reaction Chemistry and Engineering, 2016, 1, 106-118.	1.9	30
317	Halogenâ€Dependent Surface Confinement Governs Selective Alkane Functionalization to Olefins. Angewandte Chemie - International Edition, 2019, 58, 5877-5881.	7.2	30
318	Impact of hybrid CO2-CO feeds on methanol synthesis over In2O3-based catalysts. Applied Catalysis B: Environmental, 2021, 285, 119878.	10.8	30
319	Planetary Boundaries Analysis of Low-Carbon Ammonia Production Routes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9740-9749.	3.2	30
320	On the activation of Pt/Al2O3 catalysts in HC-SCR by sintering: determination of redox-active sites using Multitrack. Applied Catalysis B: Environmental, 2003, 46, 687-702.	10.8	29
321	In-line dispersion–precipitation method for the synthesis of metal-substituted dawsonites. Genesis of oxide materials with superior properties. Journal of Materials Chemistry, 2006, 16, 2886-2889.	6.7	29
322	Hydrogenolysis of methylcyclopentane over the bimetallic Ir–Au/γ-Al2O3 catalysts. Applied Surface Science, 2007, 253, 5888-5893.	3.1	29
323	Hierarchical Zeolites Overcome all Obstacles: Next Stop Industrial Implementation. Chimia, 2022, 67, 327.	0.3	29
324	Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts. Topics in Catalysis, 2017, 60, 1522-1536.	1.3	29

#	Article	IF	CITATIONS
325	Selective Methane Functionalization via Oxyhalogenation over Supported Noble Metal Nanoparticles. ACS Catalysis, 2019, 9, 1710-1725.	5. 5	29
326	Hybridization of Fossil―and CO ₂ â€Based Routes for Ethylene Production using Renewable Energy. ChemSusChem, 2020, 13, 6370-6380.	3.6	29
327	Activation of Copper Species on Carbon Nitride for Enhanced Activity in the Arylation of Amines. ACS Catalysis, 2020, 10, 11069-11080.	5 . 5	29
328	Direct N2O decomposition over ex-framework FeMFI catalysts. Role of extra-framework species. Catalysis Communications, 2002, 3, 19-23.	1.6	28
329	Electrochemical characterization of iron sites in ex-framework FeZSM-5. Journal of Electroanalytical Chemistry, 2002, 519, 72-84.	1.9	28
330	Framework Composition Effects on the Performance of Steam-Activated FeMFI Zeolites in the N2O-Mediated Propane Oxidative Dehydrogenation to Propylene. Journal of Physical Chemistry B, 2005, 109, 20529-20538.	1.2	28
331	Application of Mercury Intrusion Porosimetry for Characterization of Combined Micro- and Mesoporous Zeolites. Particle and Particle Systems Characterization, 2006, 23, 101-106.	1.2	28
332	Mechanism and micro-kinetics of direct N2O decomposition over BaFeAl11O19 hexaaluminate and comparison with Fe-MFI zeolites. Applied Catalysis B: Environmental, 2010, 99, 66-73.	10.8	28
333	Oxychlorination–Dehydrochlorination Chemistry on Bifunctional Ceria Catalysts for Intensified Vinyl Chloride Production. Angewandte Chemie - International Edition, 2016, 55, 3068-3072.	7.2	27
334	Europium Oxybromide Catalysts for Efficient Bromine Looping in Natural Gas Valorization. Angewandte Chemie - International Edition, 2017, 56, 9791-9795.	7.2	27
335	Catalytic halogenation of methane: a dream reaction with practical scope?. Catalysis Science and Technology, 2019, 9, 4515-4530.	2.1	27
336	Planetary metrics for the absolute environmental sustainability assessment of chemicals. Green Chemistry, 2021, 23, 9881-9893.	4.6	27
337	Single-atom heterogeneous catalysts for sustainable organic synthesis. Trends in Chemistry, 2022, 4, 264-276.	4.4	27
338	Magnetic properties of Co–Al, Ni–Al, and Mg–Al hydrotalcites and the oxides formed upon their thermal decomposition. Journal of Materials Chemistry, 2002, 12, 2370-2375.	6.7	26
339	Superior activity of rutile-supported ruthenium nanoparticles for HCl oxidation. Catalysis Science and Technology, 2013, 3, 2555.	2.1	26
340	Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over Cu–Ni–Al Catalysts. ChemCatChem, 2015, 7, 1551-1558.	1.8	26
341	The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects. Physical Chemistry Chemical Physics, 2016, 18, 9211-9219.	1.3	26
342	Preparation of organic-functionalized mesoporous ZSM-5 zeolites by consecutive desilication and silanization. Materials Chemistry and Physics, 2011, 127, 278-284.	2.0	25

#	Article	IF	Citations
343	Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semiâ€Hydrogenation. ChemCatChem, 2019, 11, 457-464.	1.8	25
344	Sustainable Synthesis of Bimetallic Single Atom Goldâ€Based Catalysts with Enhanced Durability in Acetylene Hydrochlorination. Small, 2021, 17, e2004599.	5.2	25
345	In situ studies during thermal activation of dawsonite-type compounds to oxide catalysts. Journal of Materials Chemistry, 2007, 17, 1222-1229.	6.7	24
346	Carbon nanofibres-supported KCoMo catalysts for syngas conversion into higher alcohols. Catalysis Science and Technology, 2018, 8, 187-200.	2.1	24
347	Epitaxially Directed Iridium Nanostructures on Titanium Dioxide for the Selective Hydrodechlorination of Dichloromethane. ACS Catalysis, 2020, 10, 528-542.	5 . 5	24
348	Mechanistic routes toward C ₃ products in copper-catalysed CO ₂ electroreduction. Catalysis Science and Technology, 2022, 12, 409-417.	2.1	24
349	Cyclic Process for Propylene Production via Oxidative Dehydrogenation of Propane with N2O over FeZSM-5. Industrial & Engineering Chemistry Research, 2005, 44, 455-462.	1.8	23
350	Perturbing the properties of layered double hydroxides by continuous coprecipitation with short residence time. Journal of Materials Chemistry, 2010, 20, 5878.	6.7	23
351	Spray deposition method for the synthesis of supported catalysts with superior metal dispersion. Microporous and Mesoporous Materials, 2011, 146, 76-81.	2.2	23
352	Catalyst and Process Design for the Continuous Manufacture of Rare Sugar Alcohols by Epimerization–Hydrogenation of Aldoses. ChemSusChem, 2016, 9, 3407-3418.	3 . 6	23
353	Performance of Metal-Catalyzed Hydrodebromination of Dibromomethane Analyzed by Descriptors Derived from Statistical Learning. ACS Catalysis, 2020, 10, 6129-6143.	5 . 5	23
354	Transient Studies of Direct N2O Decomposition over Pt–Rh Gauze Catalyst. Mechanistic and Kinetic Aspects of Oxygen Formation. Catalysis Letters, 2003, 91, 211-216.	1.4	22
355	Reconstruction of Dawsonite by Alumina Carbonation in (NH4)2CO3: Requisites and Mechanism. Chemistry of Materials, 2008, 20, 3973-3982.	3.2	22
356	Theoretical investigation of the inversion parameter in Co3â^'sAlsO4 (s=0â€"3) spinel structures. Solid State Ionics, 2009, 180, 1011-1016.	1.3	22
357	Evaluation of catalysts for N2O abatement in fluidized-bed combustion. Applied Catalysis B: Environmental, 2009, 90, 83-88.	10.8	22
358	Mechanism of Ethylene Oxychlorination on Ceria. ACS Catalysis, 2018, 8, 2651-2663.	5 . 5	22
359	Design of Single Gold Atoms on Nitrogenâ€Doped Carbon for Molecular Recognition in Alkyne Semiâ€Hydrogenation. Angewandte Chemie, 2019, 131, 514-519.	1.6	22
360	Adsorption of Nitrous Oxide on Silicalite-1. Journal of Chemical & Engineering Data, 2002, 47, 587-589.	1.0	21

#	Article	IF	CITATIONS
361	Evidences of the origin of N2O in the high-temperature NH3oxidation over Pt–Rh gauze. Chemical Communications, 2004, , 376-377.	2.2	21
362	Catalytic Bromine Recovery: An Enabling Technology for Emerging Alkane Functionalization Processes. ChemCatChem, 2013, 5, 3520-3523.	1.8	21
363	Generation of Basic Centers in Highâ€Silica Zeolites and their Application in Gasâ€Phase Upgrading of Bioâ€Oil. ChemSusChem, 2014, 7, 1729-1738.	3.6	21
364	Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption. Physical Chemistry Chemical Physics, 2016, 18, 15269-15277.	1.3	21
365	Interplay between surface chemistry and performance of rutile-type catalysts for halogen production. Chemical Science, 2016, 7, 2996-3005.	3.7	21
366	Atomâ€byâ€Atom Resolution of Structure–Function Relations over Lowâ€Nuclearity Metal Catalysts. Angewandte Chemie, 2019, 131, 8816-8821.	1.6	21
367	N2O-mediated propane oxidative dehydrogenation over Fe-zeolites. TEOM studies for continuous propylene production in a cyclically-operated reactor. Chemical Engineering Science, 2004, 59, 5535-5543.	1.9	20
368	Perovskite Membranes in Ammonia Oxidation: Towards Process Intensification in Nitric Acid Manufacture. Angewandte Chemie, 2005, 117, 1136-1139.	1.6	20
369	Kinetics of the N2O+CO reaction over steam-activated FeZSM-5. Applied Catalysis A: General, 2007, 327, 66-72.	2.2	20
370	Advanced visualization strategies bridge the multidimensional complexity of technical catalysts. Current Opinion in Chemical Engineering, 2013, 2, 304-311.	3.8	20
371	Bifunctional Hierarchical Zeoliteâ€Supported Silver Catalysts for the Conversion of Glycerol to Allyl Alcohol. ChemCatChem, 2017, 9, 2195-2202.	1.8	20
372	Nitrideâ€Derived Copper Modified with Indium as a Selective and Highly Stable Catalyst for the Electroreduction of Carbon Dioxide. ChemSusChem, 2019, 12, 3501-3508.	3.6	20
373	Hydrocracking of hexadecane to jet fuel components over hierarchical Ru-modified faujasite zeolite. Fuel, 2020, 278, 118193.	3.4	20
374	Structure Sensitivity and Evolution of Nickel-Bearing Nitrogen-Doped Carbons in the Electrochemical Reduction of CO ₂ . ACS Catalysis, 2020, 10, 3444-3454.	5 . 5	20
375	Operando Photoelectron Photoion Coincidence Spectroscopy Unravels Mechanistic Fingerprints of Propane Activation by Catalytic Oxyhalogenation. Journal of Physical Chemistry Letters, 2020, 11, 856-863.	2.1	20
376	Sustainability Assessment of Thermocatalytic Conversion of CO ₂ to Transportation Fuels, Methanol, and 1-Propanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 10591-10600.	3.2	20
377	Toward reliable and accessible ammonia quantification in the electrocatalytic reduction of nitrogen. Chem Catalysis, 2021, 1, 1505-1518.	2.9	20
378	Highly Efficient Fe-silicalite Zeolite in Direct Propane Ammoxidation with N2O and O2. Catalysis Letters, 2005, 104, 163-167.	1.4	19

#	Article	IF	Citations
379	Alkaline Treatment of Iron-Containing MFI Zeolites. Influence on Mesoporosity Development and Iron Speciation. Journal of Physical Chemistry B, 2006, 110, 20369-20378.	1.2	19
380	Distinct activity and time-on-stream behavior of pure Pt and Rh metals and Pt–Rh alloys in the high-temperature NO decomposition. Applied Catalysis A: General, 2006, 298, 73-79.	2.2	19
381	Mechanistic peculiarities of the N2O reduction by CH4 over Fe-silicalite. Catalysis Today, 2007, 119, 243-246.	2.2	19
382	Pressure and Materials Effects on the Selectivity of RuO ₂ in NH ₃ Oxidation. Journal of Physical Chemistry C, 2010, 114, 16660-16668.	1.5	19
383	Stability and inter-conversion of synthetic dawsonites in aqueous media. Geochimica Et Cosmochimica Acta, 2010, 74, 7048-7058.	1.6	19
384	Hybrid Optical/RF Channel Performance Analysis for Turbo Codes. IEEE Transactions on Communications, 2011, 59, 1389-1399.	4.9	19
385	Room Temperature Synthesis and Size Control of HKUSTâ€1. Helvetica Chimica Acta, 2012, 95, 2278-2286.	1.0	19
386	Selective Propylene Production via Propane Oxychlorination on Metal Phosphate Catalysts. ACS Catalysis, 2019, 9, 5772-5782.	5 . 5	19
387	Incorporation of appropriate contact angles in textural characterization by mercury porosimetry. Studies in Surface Science and Catalysis, 2002, 144, 91-98.	1.5	18
388	Activation by sintering of Pt-beta catalysts in deNO HC-SCR. Structure–activity relationships. Catalysis Communications, 2003, 4, 165-170.	1.6	18
389	Thermal decomposition of hydrotalcite-like compounds studied by a novel tapered element oscillating microbalance (TEOM). Thermochimica Acta, 2006, 444, 75-82.	1.2	18
390	Rational modeling of the CPO of methane over platinum gauze. Catalysis Today, 2007, 119, 311-316.	2.2	18
391	Surface state during activation and reaction of high-performing multi-metallic alkyne hydrogenation catalysts. Chemical Science, 2011, 2, 1379.	3.7	18
392	Molecular Understanding of Enyne Hydrogenation over Palladium and Copper Catalysts. ChemCatChem, 2012, 4, 1420-1427.	1.8	18
393	Structuring hybrid palladium nanoparticles in metallic monolithic reactors for continuous-flow three-phase alkyne hydrogenation. Reaction Chemistry and Engineering, 2016, 1, 454-462.	1.9	18
394	Visualising compositional heterogeneity during the scale up of multicomponent zeolite bodies. Materials Horizons, 2017, 4, 857-861.	6.4	18
395	Mapping the Birth and Evolution of Pores upon Thermal Activation of Layered Hydroxides. Chemistry of Materials, 2017, 29, 4052-4062.	3.2	18
396	Methanol as a Hydrogen Carrier: Kinetic and Thermodynamic Drivers for its CO ₂ â∈Based Synthesis and Reforming over Heterogeneous Catalysts. ChemSusChem, 2020, 13, 6330-6337.	3.6	18

#	Article	IF	CITATIONS
397	Elucidation of the Surprising Role of NO in N2O Decomposition over FeZSM-5. Kinetics and Catalysis, 2003, 44, 639-647.	0.3	17
398	Acidity and accessibility studies on mesoporous ITQ-4 zeolite. Catalysis Today, 2010, 152, 11-16.	2.2	17
399	Alkaline-assisted stannation of beta zeolite as a scalable route to Lewis-acid catalysts for the valorisation of renewables. New Journal of Chemistry, 2016, 40, 4136-4139.	1.4	17
400	Semihydrogenation of Acetylene on Indium Oxide: Proposed Singleâ€Ensemble Catalysis. Angewandte Chemie, 2017, 129, 10895-10900.	1.6	17
401	Selective Methane Oxybromination over Nanostructured Ceria Catalysts. ACS Catalysis, 2018, 8, 291-303.	5.5	17
402	Structuring zeolite bodies for enhanced heat-transfer properties. Microporous and Mesoporous Materials, 2015, 208, 196-202.	2.2	16
403	Synthesis-property-performance relationships of amorphous silica-alumina catalysts for the production of methylenedianiline and higher homologues. Journal of Catalysis, 2016, 344, 757-767.	3.1	16
404	Insights into the Mechanism of Zeolite Detemplation by Positron Annihilation Lifetime Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 25451-25461.	1.5	16
405	Phase-controlled synthesis of iron phosphates via phosphation of β-FeOOH nanorods. CrystEngComm, 2016, 18, 3174-3185.	1.3	16
406	Lanthanum vanadate catalysts for selective and stable methane oxybromination. Journal of Catalysis, 2018, 363, 69-80.	3.1	16
407	Redispersion strategy for high-loading carbon-supported metal catalysts with controlled nuclearity. Journal of Materials Chemistry A, 2022, 10, 5953-5961.	5.2	16
408	Natural Wood-Based Catalytic Membrane Microreactors for Continuous Hydrogen Generation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 8417-8426.	4.0	16
409	By-product co-feeding reveals insights into the role of zinc on methanol synthesis catalysts. Catalysis Communications, 2012, 21, 63-67.	1.6	15
410	Promotional Effect of Ni in the Selective Gasâ€Phase Hydrogenation of Chloronitrobenzene over Cuâ€based Catalysts. ChemCatChem, 2012, 4, 668-673.	1.8	15
411	Synthesizing Highâ€Volume Chemicals from CO ₂ without Direct H ₂ Input. ChemSusChem, 2020, 13, 6066-6089.	3.6	15
412	A TEOM-MS study on the interaction of N2O with a hydrotalcite-derived multimetallic mixed oxide catalyst. Applied Catalysis A: General, 2002, 225, 87-100.	2.2	14
413	Characterization of Iron Species in Ex-Framework FeZSM-5 by Electrochemical Methods. Catalysis Letters, 2002, 78, 303-312.	1.4	14
414	Effect of NO on the catalytic removal of N2O over FeZSM-5. Friend or foe. Catalysis Communications, 2003, 4, 333-338.	1.6	14

#	Article	IF	CITATIONS
415	Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate. Angewandte Chemie - International Edition, 2016, 55, 15619-15623.	7.2	14
416	Impact of Daily Startup–Shutdown Conditions on the Production of Solar Methanol over a Commercial Cu–ZnO–Al ₂ 0 ₃ Catalyst. Energy Technology, 2016, 4, 565-572.	1.8	14
417	Selective dehydrogenation of bioethanol to acetaldehyde over basic USY zeolites. Catalysis Science and Technology, 2016, 6, 2706-2714.	2.1	14
418	Electrochemical Effects at Surfactant–Platinum Nanoparticle Interfaces Boost Catalytic Performance. ChemCatChem, 2017, 9, 604-609.	1.8	14
419	Mechanistic Insights into the Ceria-Catalyzed Synthesis of Carbamates as Polyurethane Precursors. ACS Catalysis, 2019, 9, 7708-7720.	5.5	14
420	CO 2 â€Promoted Catalytic Process Forming Higher Alcohols with Tunable Nature at Record Productivity. ChemCatChem, 2020, 12, 2732-2744.	1.8	14
421	Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 3596-3602.	7.2	14
422	Transient studies on the effect of oxygen on the high-temperature NO reduction by NH3 over Pt–Rh gauze. Applied Catalysis A: General, 2005, 289, 97-103.	2.2	13
423	Optimal Hydrocarbon Selection for Catalytic N2O Reduction over Iron-Containing ZSM-5 Zeolite. Environmental Science & Environm	4.6	13
424	A Single-Input Multiple-Output Optical System for Mobile Communication: Modeling and Validation. IEEE Photonics Technology Letters, 2014, 26, 368-371.	1.3	13
425	Halogen type as a selectivity switch in catalysed alkane oxyhalogenation. Catalysis Science and Technology, 2018, 8, 2231-2243.	2.1	13
426	Shedding New Light on Nanostructured Catalysts with Positron Annihilation Spectroscopy. Small Methods, 2018, 2, 1800268.	4.6	13
427	Development of In2O3-based Catalysts for CO2-based Methanol Production. Chimia, 2020, 74, 257.	0.3	13
428	Ceriaâ€Supported Gold Nanoparticles as a Superior Catalyst for Nitrous Oxide Production via Ammonia Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
429	Selectivity patterns in heterogeneously catalyzed hydrogenation of conjugated ene-yne and diene compounds. Journal of Catalysis, 2011, 284, 165-175.	3.1	12
430	Assembly of a hierarchical zeolite-silica composite by spray drying. CrystEngComm, 2012, 14, 5985.	1.3	12
431	Mechanism of ethylene oxychlorination over ruthenium oxide. Journal of Catalysis, 2017, 353, 171-180.	3.1	12
432	Platform Chemicals via Zeolite atalyzed Fast Pyrolysis of Glucose. ChemCatChem, 2017, 9, 1579-1582.	1.8	12

#	Article	IF	Citations
433	Elucidating the Distribution and Speciation of Boron and Cesium in BCsX Zeolite Catalysts for Styrene Production. ChemPhysChem, 2018, 19, 437-445.	1.0	12
434	ZnO-Promoted Inverse ZrO ₂ –Cu Catalysts for CO ₂ -Based Methanol Synthesis under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 81-90.	3.2	12
435	Comments on "Infrared emission spectroscopic studies of the thermal transformation of Mg-, Ni- and Co-hydrotalcite catalysts―[Appl. Catal. A: Gen. 184 (1999) 61–71]. Applied Catalysis A: General, 2000, 204, 265-267.	2.2	11
436	Role of intrinsic zeolite properties on mesopore formation by desilication of MFI structures. Studies in Surface Science and Catalysis, 2005, 156, 401-408.	1.5	11
437	Reevaluation of the Structure and Fundamental Physical Properties of Dawsonites by DFT Studies. Inorganic Chemistry, 2011, 50, 2590-2598.	1.9	11
438	Design and Analysis of Bit Selections in HARQ Algorithm for Hybrid FSO/RF Channels. , 2013, , .		11
439	Understanding the Structure of Cationic Sites in Alkali Metal-Grafted USY Zeolites. Journal of Physical Chemistry C, 2016, 120, 4954-4960.	1.5	11
440	An Activated TiC–SiC Composite for Natural Gas Upgrading via Catalytic Oxyhalogenation. ChemCatChem, 2018, 10, 1282-1290.	1.8	11
441	Cascade Deoxygenation Process Integrating Acid and Base Catalysts for the Efficient Production of Second-Generation Biofuels. ACS Sustainable Chemistry and Engineering, 2019, 7, 18027-18037.	3.2	11
442	Achieving a low-carbon future through the energy–chemical nexus in China. Sustainable Energy and Fuels, 2020, 4, 6141-6155.	2.5	11
443	Carrierâ€Induced Modification of Palladium Nanoparticles on Porous Boron Nitride for Alkyne Semiâ€Hydrogenation. Angewandte Chemie, 2020, 132, 19807-19812.	1.6	11
444	Impact of Heteroatom Speciation on the Activity and Stability of Carbonâ€Based Catalysts for Propane Dehydrogenation. ChemCatChem, 2021, 13, 2599-2608.	1.8	11
445	Precursor Nuclearity and Ligand Effects in Atomicallyâ€Dispersed Heterogeneous Iron Catalysts for Alkyne Semiâ€Hydrogenation. ChemCatChem, 2021, 13, 3247-3256.	1.8	11
446	DRIFTS study of the catalytic N2O reduction by SO2 on FeZSM-5. Catalysis Communications, 2010, 11, 1058-1062.	1.6	10
447	Catalyst Distribution Strategies in Fixed-Bed Reactors for Bromine Production. Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production. Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production. Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production. Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production. Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production. Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production. Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production. Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production Industrial & Distribution Strategies in Fixed-Bed Reactors for Bromine Production Industrial & Distribution Industrial & D	1.8	10
448	Europium Oxybromide Catalysts for Efficient Bromine Looping in Natural Gas Valorization. Angewandte Chemie, 2017, 129, 9923-9927.	1.6	10
449	Determining Bio-Oil Composition via Chemometric Tools Based on Infrared Spectroscopy. ACS Sustainable Chemistry and Engineering, 2017, 5, 8710-8719.	3.2	10
450	Olefins from Natural Gas by Oxychlorination. Angewandte Chemie, 2017, 129, 13858-13862.	1.6	10

#	Article	IF	Citations
451	Nitrogenâ€Doped Carbons with Hierarchical Porosity via Chemical Blowing Towards Longâ€Lived Metalâ€Free Catalysts for Acetylene Hydrochlorination. ChemCatChem, 2020, 12, 1922-1925.	1.8	10
452	Assessing the environmental benefit of palladium-based single-atom heterogeneous catalysts for Sonogashira coupling. Green Chemistry, 2022, 24, 6879-6888.	4.6	10
453	SO2-promoted catalytic N2O removal over iron zeolites. Chemical Communications, 2008, , 5351.	2.2	9
454	Immobilizing and de-immobilizing enzymes on mesoporous silica. RSC Advances, 2015, 5, 87706-87712.	1.7	9
455	Oxychlorination–Dehydrochlorination Chemistry on Bifunctional Ceria Catalysts for Intensified Vinyl Chloride Production. Angewandte Chemie, 2016, 128, 3120-3124.	1.6	9
456	Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites. ChemPhysChem, 2017, 18, 470-479.	1.0	9
457	Mechanistic origin of the diverging selectivity patterns in catalyzed ethane and ethene oxychlorination. Journal of Catalysis, 2019, 377, 233-244.	3.1	9
458	Ceria in halogen chemistry. Chinese Journal of Catalysis, 2020, 41, 915-927.	6.9	9
459	Controlled Formation of Dimers and Spatially Isolated Atoms in Bimetallic Auâ€Ru Catalysts via Carbonâ€Host Functionalization. Small, 2022, 18, e2200224.	5.2	9
460	Mechanistic analysis of direct N2O decomposition and reduction with H2 or NH3 over RuO2. Applied Catalysis B: Environmental, 2011, 110, 33-39.	10.8	8
461	Structure analysis of a BEC-type germanosilicate zeolite including the location of the flexible organic cations in the channels. CrystEngComm, 2015, 17, 4865-4870.	1.3	8
462	Impact of feed impurities on catalysts for chlorine recycling. Applied Catalysis B: Environmental, 2015, 162, 602-609.	10.8	8
463	Halogenbedingte OberflÄ g henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen. Angewandte Chemie, 2019, 131, 5935-5940.	1.6	8
464	Aluminum Redistribution in ZSM-5 Zeolite upon Interaction with Gaseous Halogens and Hydrogen Halides and Implications in Catalysis. Journal of Physical Chemistry C, 2020, 124, 722-733.	1.5	8
465	Methanol Synthesis by Hydrogenation of Hybrid CO ₂ â^'CO Feeds. ChemSusChem, 2021, 14, 2914-2923.	3.6	8
466	Nuclearity and Host Effects of Carbonâ€Supported Platinum Catalysts for Dibromomethane Hydrodebromination. Small, 2021, 17, 2005234.	5,2	8
467	Effect of the Support in de-NOx HC-SCR Over Transition Metal Catalysts. Reaction Kinetics and Catalysis Letters, 2000, 70, 199-206.	0.6	7
468	Reactivity of Mg–Al hydrotalcites in solid and delaminated forms in ammonium carbonate solutions. Solid State Sciences, 2010, 12, 1822-1830.	1.5	7

#	Article	IF	CITATIONS
469	Improving power flow in transformers using a BTB converter to balance low voltage feeders. , 2012, , .		7
470	Upscaling Effects on Alkali Metalâ€Grafted Ultrastable Y Zeolite Extrudates for Modeled Catalytic Deoxygenation of Bioâ€oils. ChemCatChem, 2021, 13, 1951-1965.	1.8	7
471	Catalyst: A step forward for PVC manufacture from natural gas. CheM, 2022, 8, 883-885.	5.8	7
472	Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication ChemInform, 2004, 35, no.	0.1	6
473	Acidity Effects in Positron Annihilation Lifetime Spectroscopy of Zeolites. Journal of Physical Chemistry C, 2018, 122, 3443-3453.	1.5	6
474	Enhanced Performance of Zirconiumâ€Doped Ceria Catalysts for the Methoxycarbonylation of Anilines. Chemistry - A European Journal, 2020, 26, 16129-16137.	1.7	6
475	Activity differences of rutile and anatase TiO2 polymorphs in catalytic HBr oxidation. Catalysis Today, 2021, 369, 221-226.	2.2	6
476	Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy. Angewandte Chemie, 2021, 133, 3640-3646.	1.6	6
477	Structure dependence of Pt surface activated ammonia oxidation. Journal of Physics: Conference Series, 2008, 117, 012028.	0.3	6
478	Generalizing Performance Equations in Heterogeneous Catalysis from Hybrid Data and Statistical Learning. ACS Catalysis, 2022, 12, 1581-1594.	5.5	6
479	Reduction of NO by Propene Over Pt, Pd and Rh-Based ZSM-5 Under Lean-Burn Conditions. Reaction Kinetics and Catalysis Letters, 2000, 69, 385-392.	0.6	5
480	Generalized DC voltage regulation strategy for & Samp; #x03B7;:1 relation cascade H-bridge converter-based STATCOM., 2009, , .		5
481	Structural Changes of a U ₃ O ₈ /ZrO ₂ Catalyst During HCl Oxidation – a HAADF‧TEM Study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 768-773.	0.6	5
482	Hierarchically Structured MnO $<$ sub $>2sub>â\inCo/C Nanocomposites: Highly Efficient and Magnetically Recyclable Catalysts for the Aerobic Oxidation of Alcohols. ChemCatChem, 2015, 7, 2585-2589.$	1.8	5
483	Unity power factor rectifier with reactive and harmonic current compensation., 2016,,.		5
484	Preserved in a Shell: Highâ€Performance Grapheneâ€Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination. Angewandte Chemie, 2019, 131, 12425-12432.	1.6	5
485	Kinetics of ceria-catalysed ethene oxychlorination. Journal of Catalysis, 2019, 372, 287-298.	3.1	5
486	Substrate substitution effects in the Fries rearrangement of aryl esters over zeolite catalysts. Catalysis Science and Technology, 2020, 10, 4282-4292.	2.1	5

#	Article	IF	Citations
487	Ethaneâ€Based Catalytic Process for Vinyl Chloride Manufacture. Angewandte Chemie, 2021, 133, 24291-24297.	1.6	5
488	Carbonâ€Supported Bimetallic Rutheniumâ€Iridium Catalysts for Selective and Stable Hydrodebromination of Dibromomethane. ChemCatChem, 0, , .	1.8	5
489	Dual-bed Catalytic System for the Selective Reduction of NOx with Propene. Chemical Engineering and Technology, 2000, 23, 721-725.	0.9	4
490	Development of Industrial Catalysts for Sustainable Chlorine Production. Chimia, 2012, 66, 694.	0.3	4
491	Mechanistic study of the palladium-catalyzed ethyne hydrogenation by the Temporal Analysis of Products technique. Applied Catalysis A: General, 2012, 439-440, 163-170.	2.2	4
492	From the Lindlar Catalyst to Supported Ligand-Modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuous-Flow Three-Phase Hydrogenation of Acetylenic Compounds. Chemistry - A European Journal, 2014, 20, 5849-5849.	1.7	4
493	Hydrotalcite-Derived Mixed Oxides for the Synthesis of a Key Vitamin A Intermediate Reducing Waste. ACS Omega, 2018, 3, 15293-15301.	1.6	4
494	Preparation of highly active phosphated TiO2catalystsviacontinuous sol–gel synthesis in a microreactor. Catalysis Science and Technology, 2019, 9, 4744-4758.	2.1	4
495	Optical Wireless Camera Communications using Neuromorphic Vision Sensors. , 2019, , .		4
496	Dual catalyst system for selective vinyl chloride production <i>via</i> ethene oxychlorination. Catalysis Science and Technology, 2020, 10, 560-575.	2.1	4
497	On the role of iron in preparation of mesoporous Fe-MFI zeolites via desilication. Studies in Surface Science and Catalysis, 2006, 162, 267-274.	1.5	3
498	DC-bus voltage regulation scheme for asymmetric cascade H-bridge converter working as STATCOM and active filter. , $2010, , .$		3
499	Experimental multiuser mobile optical communication using compressive sensing. , 2014, , .		3
500	Design of hydrothermally-stable dawsonite-based sorbents in technical form for CO ₂ capture. Energy and Environmental Science, 2014, 7, 3640-3650.	15.6	3
501	Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate. Angewandte Chemie, 2016, 128, 15848-15852.	1.6	3
502	Halogen Chemistry on Catalytic Surfaces. Chimia, 2016, 70, 274.	0.3	3
503	Demo/poster abstract: Enabling time-critical applications over next-generation 802.11 networks. , 2018,		3
504	Mechanistic Understanding of Halogen-mediated Catalytic Processes for Selective Natural Gas Functionalization. Chimia, 2019, 73, 288.	0.3	3

#	Article	IF	Citations
505	Alkane Functionalization via Catalytic Oxychlorination: Performance as a Function of the Carbon Number. Energy Technology, 2020, 8, 1900622.	1.8	3
506	Ethaneâ€Based Catalytic Process for Vinyl Chloride Manufacture. Angewandte Chemie - International Edition, 2021, 60, 24089-24095.	7.2	3
507	Synthesis of Florol via Prins cyclization over heterogeneous catalysts. Journal of Catalysis, 2022, 405, 288-302.	3.1	3
508	Reply to "Comments on â€~Assessment of the low-temperature EnviNOx® variant for catalytic N2O abatement over steam-activated FeZSM-5: Miguel A.G. Hevia, Javier Pérez-RamÃrez, Appl. Catal. B: Environ. 77 (2008) 248–254â€â€™. Applied Catalysis B: Environmental, 2008, 84, 543-544.	10.8	2
509	Design and Applications of Single-Site Heterogeneous Catalysts. Contributions to Green Chemistry, Clean Technology and Sustainability. Von Johnâ€Meurig Thomas Angewandte Chemie, 2013, 125, 10076-10077.	1.6	2
510	Catalysis Science & Technology – five years in 2015. Catalysis Science and Technology, 2015, 5, 21-23.	2.1	2
511	Catalyst and Process Design for the Continuous Manufacture of Rare Sugar Alcohols by Epimerization-Hydrogenation of Aldoses. ChemSusChem, 2016, 9, 3373-3373.	3.6	2
512	Catalysts: Stabilization of Single Metal Atoms on Graphitic Carbon Nitride (Adv. Funct. Mater. 8/2017). Advanced Functional Materials, 2017, 27, .	7.8	2
513	Advanced kinetic models through mechanistic understanding: Population balances for methylenedianiline synthesis. Chemical Engineering Science, 2017, 167, 317-326.	1.9	2
514	Transformation of titanium carbide into mesoporous titania for catalysed HBr oxidation. Catalysis Science and Technology, 2020, 10, 4072-4083.	2.1	2
515	Microfabrication Enables Quantification of Interfacial Activity in Thermal Catalysis. Small Methods, 2021, 5, 2001231.	4.6	2
516	Highly Active and Stable Pt-USY in the Low-Temperature de-NOx HC-SCR. Reaction Kinetics and Catalysis Letters, 2000, 71, 33-40.	0.6	1
517	Catalysis Engineering on Three Levels. International Journal of Chemical Reactor Engineering, 2003, 1, .	0.6	1
518	Cascade control applied to asymmetric multilevel converter based-STATCOM., 2010,,.		1
519	Asymmetrical DC voltage regulation for a STATCOM based on H-bridge multi-cell converter. , 2010, , .		1
520	Balancing the power of transformers in low voltage distribution feeders by using the Back - to - Back power converter. , 2011 , , .		1
521	Titelbild: CuCrO2Delafossite: A Stable Copper Catalyst for Chlorine Production (Angew. Chem.) Tj ETQq1 1 0.784	4314 rgBT 1.6	/Overlock 10
522	A Joint Positioning and Communication Paradigm Using Relay Nodes as Anchors. , 2013, , .		1

#	Article	IF	CITATIONS
523	Porosity: The Hegemony of Empty Space in Functional Materials Design. Advanced Functional Materials, 2014, 24, 180-181.	7.8	1
524	Towards a Sustainable Manufacture of Hierarchical Zeolites. ChemSusChem, 2014, 7, 653-653.	3.6	1
525	Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over Cu-Ni-Al Catalysts. ChemCatChem, 2015, 7, 1503-1503.	1.8	1
526	Positron Annihilation Spectroscopy: Shedding New Light on Nanostructured Catalysts with Positron Annihilation Spectroscopy (Small Methods 12/2018). Small Methods, 2018, 2, 1800060.	4.6	1
527	Metal–Organic Frameworks/Wood Composites: Green Synthesis of Hierarchical Metal–Organic Framework/Wood Functional Composites with Superior Mechanical Properties (Adv. Sci. 7/2020). Advanced Science, 2020, 7, 2070040.	5.6	1
528	Mechanistic Routes toward C3-C4 products in Copper-Catalysed CO2 Electroreduction., 0,,.		1
529	Nanostructured Oxides in DeNOx Technologies. , 2006, , 603-632.		0
530	Optimized laser beam parameters for communications in space environments in the presence of pointing errors. , 2012, , .		0
531	Virtual Issue on Catalysis at ETH Zurich. ACS Catalysis, 2012, 2, 1792-1792.	5.5	0
532	Anchor-cum-Relay Nodes for Localizing a Mobile Source and Relaying Source Signals., 2013,,.		0
533	Metal-Organic Frameworks: Scalable Room-Temperature Conversion of Copper(II) Hydroxide into HKUST-1 (Cu3(btc)2) (Adv. Mater. 7/2013). Advanced Materials, 2013, 25, 1080-1080.	11.1	0
534	Frontispiece: The Virtue of Defects: Stable Bromine Production by Catalytic Oxidation of Hydrogen Bromide on Titanium Oxide. Angewandte Chemie - International Edition, 2014, 53, .	7.2	0
535	Zeolites: Superior Mass Transfer Properties of Technical Zeolite Bodies with Hierarchical Porosity (Adv. Funct. Mater. 2/2014). Advanced Functional Materials, 2014, 24, 174-174.	7.8	O
536	Rücktitelbild: Impact of Pore Connectivity on the Design of Long-Lived Zeolite Catalysts (Angew. Chem.) Tj ETÇ	0q0,00 rg	BT ₀ /Overlock
537	Titelbild: Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO ₂ Hydrogenation (Angew. Chem. 21/2016). Angewandte Chemie, 2016, 128, 6215-6215.	1.6	0
538	Innenrücktitelbild: Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate (Angew. Chem. 50/2016). Angewandte Chemie, 2016, 128, 15909-15909.	1.6	0
539	Hierarchical Structures: Quantifying the Complex Pore Architecture of Hierarchical Faujasite Zeolites and the Impact on Diffusion (Adv. Funct. Mater. 31/2016). Advanced Functional Materials, 2016, 26, 5768-5768.	7.8	0
540	Compressive Parameter Estimation for Correlated Frames in MIMO Visible Light Communications. IEEE Signal Processing Letters, 2016, 23, 174-178.	2.1	0

#	Article	IF	CITATIONS
541	Titelbild: Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand (Angew. Chem. 7/2017). Angewandte Chemie, 2017, 129, 1701-1701.	1.6	O
542	Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites. ChemPhysChem, 2017, 18, 428-428.	1.0	0
543	Innenrýcktitelbild: Olefins from Natural Gas by Oxychlorination (Angew. Chem. 44/2017). Angewandte Chemie, 2017, 129, 14087-14087.	1.6	0
544	Enhanced Base-Free Formic Acid Production from CO2 on Pd/g-C3 N4 by Tuning of the Carrier Defects. ChemSusChem, 2018, 11, 2841-2841.	3.6	0
545	Titelbild: Halogenbedingte OberflÄ g henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen (Angew. Chem. 18/2019). Angewandte Chemie, 2019, 131, 5829-5829.	1.6	0
546	Titelbild: Design of Single Gold Atoms on Nitrogen-Doped Carbon for Molecular Recognition in Alkyne Semi-Hydrogenation (Angew. Chem. 2/2019). Angewandte Chemie, 2019, 131, 357-357.	1.6	0
547	Innentitelbild: Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy (Angew. Chem. 7/2021). Angewandte Chemie, 2021, 133, 3354-3354.	1.6	0
548	Inside Back Cover: Microfabrication Enables Quantification of Interfacial Activity in Thermal Catalysis (Small Methods 5/2021). Small Methods, 2021, 5, 2170021.	4.6	0
549	RÃ⅓cktitelbild: Ethaneâ€Based Catalytic Process for Vinyl Chloride Manufacture (Angew. Chem. 45/2021). Angewandte Chemie, 2021, 133, 24536-24536.	1.6	0
550	Dual-Bed Catalytic System for Removal of NOx-N2O in Lean-Burn Engine Exhausts., 2002,, 229-243.		0
551	Thermal decomposition of layered Co-Al hydrotalcite An in situ study. , 2003, , 631-638.		0
552	Ten years of Catalysis Science & Technology. Catalysis Science and Technology, 2022, 12, 352-353.	2.1	0
553	Ceriaâ€Supported Gold NanoparticlesÂas a Superior Catalyst for Nitrous OxideÂProduction via Ammonia Oxidation. Angewandte Chemie, 0, , .	1.6	0
554	Rücktitelbild: Ceriaâ€Supported Gold Nanoparticles as a Superior Catalyst for Nitrous Oxide Production via Ammonia Oxidation (Angew. Chem. 19/2022). Angewandte Chemie, 2022, 134, .	1.6	0