Javier Prez-Ramrez

List of Publications by Citations

Source: https://exaly.com/author-pdf/5174721/javier-perez-ramirez-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

166 35,235 97 543 h-index g-index citations papers 632 10.5 40,347 7.92 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
543	Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. <i>Microporous and Mesoporous Materials</i> , 2003 , 60, 1-17	5.3	1523
542	Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. <i>Chemical Society Reviews</i> , 2008 , 37, 2530-42	58.5	1413
541	Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. <i>Energy and Environmental Science</i> , 2013 , 6, 3112	35.4	1184
540	A stable single-site palladium catalyst for hydrogenations. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11265-9	16.4	586
539	Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. <i>Journal of the American Chemical Society</i> , 2007 , 129, 355-60	16.4	532
538	Design of hierarchical zeolite catalysts by desilication. Catalysis Science and Technology, 2011, 1, 879	5.5	493
537	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6261-5	16.4	486
536	Desilication: on the controlled generation of mesoporosity in MFI zeolites. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2121-2131		472
535	Formation and control of N2O in nitric acid production. <i>Applied Catalysis B: Environmental</i> , 2003 , 44, 11	7-21-58	424
534	Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. <i>Chemistry - A European Journal</i> , 2005 , 11, 4983-94	4.8	415
533	Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005 , 127, 10792-3	16.4	414
532	Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13062-13065	3.4	411
531	Zeolite Catalysts with Tunable Hierarchy Factor by Pore-Growth Moderators. <i>Advanced Functional Materials</i> , 2009 , 19, 3972-3979	15.6	374
530	Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 2017, 46, 1358	3- 482 6	359
529	Tailored crystalline microporous materials by post-synthesis modification. <i>Chemical Society Reviews</i> , 2013 , 42, 263-90	58.5	337
528	A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. <i>Nature Nanotechnology</i> , 2018 , 13, 702-707	28.7	316
527	On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. <i>Microporous and Mesoporous Materials</i> , 2004 , 69, 29-34	5.3	290

(2005-2004)

526	Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 241, 53-58	5.1	249
525	Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies. <i>Advanced Functional Materials</i> , 2012 , 22, 916-928	15.6	239
524	Quantification of enhanced acid site accessibility in hierarchical zeolites IThe accessibility index. <i>Journal of Catalysis</i> , 2009 , 264, 11-14	7.3	239
523	Single-Atom Catalysts across the Periodic Table. <i>Chemical Reviews</i> , 2020 , 120, 11703-11809	68.1	237
522	Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. <i>Applied Catalysis A: General</i> , 2009 , 364, 191-198	5.1	234
521	Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. <i>Green Chemistry</i> , 2015 , 17, 5114-5130	10	233
520	Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. <i>Nature Communications</i> , 2014 , 5,	17.4	221
519	Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. <i>Journal of Catalysis</i> , 2005 , 232, 318-334	7.3	220
518	Desilication mechanism revisited: highly mesoporous all-silica zeolites enabled through pore-directing agents. <i>Chemistry - A European Journal</i> , 2011 , 17, 1137-47	4.8	213
517	Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: role of mesoporosity and acid site speciation. <i>Chemistry - A European Journal</i> , 2010 , 16, 6224-33	4.8	212
516	Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions. <i>Chemical Society Reviews</i> , 2016 , 45, 3331-52	58.5	208
515	Mesoporous beta zeolite obtained by desilication. <i>Microporous and Mesoporous Materials</i> , 2008 , 114, 93-102	5.3	206
514	Advances in the Design of Nanostructured Catalysts for Selective Hydrogenation. <i>ChemCatChem</i> , 2016 , 8, 21-33	5.2	204
513	Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO. <i>Chemical Society Reviews</i> , 2020 , 49, 2937-3004	58.5	201
512	Visualization of hierarchically structured zeolite bodies from macro to nano length scales. <i>Nature Chemistry</i> , 2012 , 4, 825-31	17.6	200
511	Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions?. <i>Journal of Catalysis</i> , 2007 , 251, 21-27	7.3	192
510	Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior. <i>Journal of Catalysis</i> , 2004 , 223, 13-27	7.3	191
509	Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilicationBealumination. <i>Microporous and Mesoporous Materials</i> , 2005 , 87, 153-161	5.3	190

508	Full Compositional Flexibility in the Preparation of Mesoporous MFI Zeolites by Desilication. Journal of Physical Chemistry C, 2011 , 115, 14193-14203	3.8	189	
507	Aldol condensations over reconstructed Mg-Al hydrotalcites: structure-activity relationships related to the rehydration method. <i>Chemistry - A European Journal</i> , 2005 , 11, 728-39	4.8	185	
506	In situ investigation of thethermal decomposition of CoAl hydrotalcite in different atmospheres. <i>Journal of Materials Chemistry</i> , 2001 , 11, 821-830		181	
505	Tailored Mesoporosity Development in Zeolite Crystals by Partial Detemplation and Desilication. <i>Advanced Functional Materials</i> , 2009 , 19, 164-172	15.6	179	
504	The Multifaceted Reactivity of Single-Atom Heterogeneous Catalysts. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15316-15329	16.4	179	
503	Electrocatalytic Reduction of Nitrogen: From Haber-Bosch to Ammonia Artificial Leaf. <i>CheM</i> , 2019 , 5, 263-283	16.2	177	
502	Halogen-Mediated Conversion of Hydrocarbons to Commodities. <i>Chemical Reviews</i> , 2017 , 117, 4182-424	47 8.1	176	
501	Key role of chemistry versus bias in electrocatalytic oxygen evolution. <i>Nature</i> , 2020 , 587, 408-413	50.4	176	
500	Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8620-3	16.4	175	
499	Stabilization of Single Metal Atoms on Graphitic Carbon Nitride. <i>Advanced Functional Materials</i> , 2017 , 27, 1605785	15.6	172	
498	From powder to technical body: the undervalued science of catalyst scale up. <i>Chemical Society Reviews</i> , 2013 , 42, 6094-112	58.5	170	
497	Structural analysis of hierarchically organized zeolites. <i>Nature Communications</i> , 2015 , 6, 8633	17.4	168	
496	Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3 (btc)2). <i>Advanced Materials</i> , 2013 , 25, 1052-7	24	167	
495	Critical appraisal of mesopore characterization by adsorption analysis. <i>Applied Catalysis A: General</i> , 2004 , 268, 121-125	5.1	167	
494	Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2. <i>Journal of Catalysis</i> , 2012 , 286, 287-297	7.3	165	
493	Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System via Copolymerization with Silver Tricyanomethanide. <i>ACS Nano</i> , 2016 , 10, 3166-75	16.7	163	
492	Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. <i>Journal of Catalysis</i> , 2010 , 273, 92-102	7.3	162	
491	Opposite face sensitivity of CeOlin hydrogenation and oxidation catalysis. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12069-72	16.4	161	

(2001-2000)

490	The six-flow reactor technology A review on fast catalyst screening and kinetic studies. <i>Catalysis Today</i> , 2000 , 60, 93-109	5.3	159	
489	Preparation, Characterization, and Performance of FeZSM-5 for the Selective Oxidation of Benzene to Phenol with N2O. <i>Journal of Catalysis</i> , 2000 , 195, 287-297	7:3	158	
488	Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO hydrogenation. <i>Nature Communications</i> , 2019 , 10, 3377	17.4	157	•
487	Desilication of ferrierite zeolite for porosity generation and improved effectiveness in polyethylene pyrolysis. <i>Journal of Catalysis</i> , 2009 , 265, 170-180	7-3	156	
486	Mechanism of HCl oxidation (Deacon process) over RuO2. <i>Journal of Catalysis</i> , 2008 , 255, 29-39	7.3	152	
485	Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: Triple- versus double-bond activation. <i>Journal of Catalysis</i> , 2007 , 247, 383-386	7:3	152	
484	Physicochemical Characterization of Isomorphously Substituted FeZSM-5 during Activation. <i>Journal of Catalysis</i> , 2002 , 207, 113-126	7:3	148	
483	Sustainable chlorine recycling via catalysed HCl oxidation: from fundamentals to implementation. <i>Energy and Environmental Science</i> , 2011 , 4, 4786	35.4	147	
482	Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned. <i>ACS Catalysis</i> , 2012 , 2, 1487-1499	13.1	146	
481	Alkaline Posttreatment of MFI Zeolites. From Accelerated Screening to Scale-up. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 4193-4201	3.9	146	
480	Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. <i>Nature Chemistry</i> , 2018 , 10, 804-812	17.6	145	
479	Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. <i>Journal of Catalysis</i> , 2003 , 214, 33-45	7-3	140	
478	Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. <i>Chemical Society Reviews</i> , 2015 , 44, 7025-43	58.5	138	
477	Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide. <i>Journal of Catalysis</i> , 2018 , 361, 313-321	7-3	132	
476	Sulfur-Modified Copper Catalysts for the Electrochemical Reduction of Carbon Dioxide to Formate. <i>ACS Catalysis</i> , 2018 , 8, 837-844	13.1	132	
475	Mesopore Formation in USY and Beta Zeolites by Base Leaching: Selection Criteria and Optimization of Pore-Directing Agents. <i>Crystal Growth and Design</i> , 2012 , 12, 3123-3132	3.5	128	
474	Partial hydrogenation of propyne over copper-based catalysts and comparison with nickel-based analogues. <i>Journal of Catalysis</i> , 2010 , 269, 80-92	7-3	128	
473	In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of CoAl and NiAl hydrotalcites. <i>Vibrational Spectroscopy</i> , 2001 , 27, 75-88	2.1	128	

472	Strategies to break linear scaling relationships. <i>Nature Catalysis</i> , 2019 , 2, 971-976	36.5	127
471	Building Blocks for High Performance in Electrocatalytic CO Reduction: Materials, Optimization Strategies, and Device Engineering. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3933-3944	6.4	122
470	Mesoporous ZSM-22 zeolite obtained by desilication: peculiarities associated with crystal morphology and aluminium distribution. <i>CrystEngComm</i> , 2011 , 13, 3408	3.3	121
469	NO-Assisted N2O Decomposition over Fe-Based Catalysts: Effects of Gas-Phase Composition and Catalyst Constitution. <i>Journal of Catalysis</i> , 2002 , 208, 211-223	7.3	121
468	From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. <i>Chemistry - A European Journal</i> , 2014 , 20, 5926-37	4.8	120
467	Effects of Binders on the Performance of Shaped Hierarchical MFI Zeolites in Methanol-to-Hydrocarbons. <i>ACS Catalysis</i> , 2014 , 4, 2409-2417	13.1	118
466	Cooperative effects in ternary Cu-Ni-Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4321-7	16.4	116
465	Transforming Energy with Single-Atom Catalysts. <i>Joule</i> , 2019 , 3, 2897-2929	27.8	115
464	New and revisited insights into the promotion of methanol synthesis catalysts by CO2. <i>Catalysis Science and Technology</i> , 2013 , 3, 3343	5.5	114
463	A density functional theory study of the EhythicLindlar hydrogenation catalyst. <i>Theoretical Chemistry Accounts</i> , 2011 , 128, 663-673	1.9	114
462	Enhanced Reduction of CO2 to CO over Cu I h Electrocatalysts: Catalyst Evolution Is the Key. <i>ACS Catalysis</i> , 2016 , 6, 6265-6274	13.1	114
461	Selective homogeneous and heterogeneous gold catalysis with alkynes and alkenes: similar behavior, different origin. <i>ChemPhysChem</i> , 2008 , 9, 1624-9	3.2	111
460	Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. <i>Nature Communications</i> , 2018 , 9, 2634	17.4	110
459	Molecular understanding of alkyne hydrogenation for the design of selective catalysts. <i>Dalton Transactions</i> , 2010 , 39, 8412-9	4.3	110
45 ⁸	Visualizing the crystal structure and locating the catalytic activity of micro- and mesoporous ZSM-5 zeolite crystals by using in situ optical and fluorescence microscopy. <i>Chemistry - A European Journal</i> , 2008 , 14, 1718-25	4.8	110
457	Environmental and economic assessment of lactic acid production from glycerol using cascade bioand chemocatalysis. <i>Energy and Environmental Science</i> , 2015 , 8, 558-567	35.4	109
456	Plant-to-planet analysis of CO2-based methanol processes. <i>Energy and Environmental Science</i> , 2019 , 12, 3425-3436	35.4	107
455	Environmental and economical perspectives of a glycerol biorefinery. <i>Energy and Environmental Science</i> , 2018 , 11, 1012-1029	35.4	106

(2012-2012)

454	An integrated approach to Deacon chemistry on RuO2-based catalysts. <i>Journal of Catalysis</i> , 2012 , 285, 273-284	7.3	104
453	Superior performance of ex-framework FeZSM-5 in direct N2O decomposition in tail-gases from nitric acid plants. <i>Chemical Communications</i> , 2001 , 693-694	5.8	102
452	Hierarchical FAU- and LTA-Type Zeolites by Post-Synthetic Design: A New Generation of Highly Efficient Base Catalysts. <i>Advanced Functional Materials</i> , 2013 , 23, 1923-1934	15.6	101
451	Memory effect of activated Mg-Al hydrotalcite: in situ XRD studies during decomposition and gas-phase reconstruction. <i>Chemistry - A European Journal</i> , 2007 , 13, 870-8	4.8	101
450	Evolution, achievements, and perspectives of the TAP technique. <i>Catalysis Today</i> , 2007 , 121, 160-169	5.3	100
449	Active site structure sensitivity in N2O conversion over FeMFI zeolites. <i>Journal of Catalysis</i> , 2003 , 218, 234-238	7-3	99
448	Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHxSpecies. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 860-868	3.8	98
447	DFT characterization of adsorbed NH(x) species on Pt(100) and Pt(111) surfaces. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 18061-9	3.4	97
446	Volcano Trend in Electrocatalytic CO2 Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon. <i>ACS Catalysis</i> , 2019 , 9, 10426-10439	13.1	96
445	Solid-State Chemistry of Cuprous Delafossites: Synthesis and Stability Aspects. <i>Chemistry of Materials</i> , 2013 , 25, 4423-4435	9.6	96
444	Palladium Nanoparticles Supported on Magnetic Carbon-Coated Cobalt Nanobeads: Highly Active and Recyclable Catalysts for Alkene Hydrogenation. <i>Advanced Functional Materials</i> , 2014 , 24, 2020-2027	, 15.6	95
443	Hydroisomerization of emerging renewable hydrocarbons using hierarchical Pt/H-ZSM-22 catalyst. <i>ChemSusChem</i> , 2013 , 6, 421-5	8.3	94
442	Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid. <i>ChemSusChem</i> , 2013 , 6, 831-9	8.3	94
441	Molecular-Level Understanding of CeO2 as a Catalyst for Partial Alkyne Hydrogenation. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 5352-5360	3.8	92
440	Superior Mass Transfer Properties of Technical Zeolite Bodies with Hierarchical Porosity. <i>Advanced Functional Materials</i> , 2014 , 24, 209-219	15.6	91
439	Role of Zirconia in Indium Oxide-Catalyzed CO2 Hydrogenation to Methanol. <i>ACS Catalysis</i> , 2020 , 10, 1133-1145	13.1	88
438	Active iron sites associated with the reaction mechanism of N2O conversions over steam-activated FeMFI zeolites. <i>Journal of Catalysis</i> , 2004 , 227, 512-522	7.3	87
437	Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication. <i>Microporous and Mesoporous Materials</i> , 2012 , 148, 115-121	5.3	86

436	Porosity-Acidity Interplay in Hierarchical ZSM-5 Zeolites for Pyrolysis Oil Valorization to Aromatics. <i>ChemSusChem</i> , 2015 , 8, 3283-93	8.3	86
435	Hierarchical Sn-MFI zeolites prepared by facile top-down methods for sugar isomerisation. <i>Catalysis Science and Technology</i> , 2014 , 4, 2302	5.5	86
434	Pt(100)-Catalyzed Ammonia Oxidation Studied by DFT: Mechanism and Microkinetics. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13554-13562	3.8	86
433	Prospects of N2O emission regulations in the European fertilizer industry. <i>Applied Catalysis B:</i> Environmental, 2007 , 70, 31-35	21.8	84
432	Reactivity descriptors for ceria in catalysis. Applied Catalysis B: Environmental, 2016, 197, 299-312	21.8	83
431	Ex-framework FeZSM-5 for control of N2O in tail-gases. <i>Catalysis Today</i> , 2002 , 76, 55-74	5.3	83
430	Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. <i>National Science Review</i> , 2018 , 5, 642-652	10.8	82
429	Interdependence between porosity, acidity, and catalytic performance in hierarchical ZSM-5 zeolites prepared by post-synthetic modification. <i>Journal of Catalysis</i> , 2013 , 308, 398-407	7.3	82
428	The role of Bristed acidity in the SCR of NO over Fe-MFI catalysts. <i>Microporous and Mesoporous Materials</i> , 2008 , 111, 124-133	5.3	82
427	Highly active SO2-resistant ex-framework FeMFI catalysts for direct N2O decomposition. <i>Applied Catalysis B: Environmental</i> , 2002 , 35, 227-234	21.8	81
426	Study of alkaline-doping agents on the performance of reconstructed MgAl hydrotalcites in aldol condensations. <i>Applied Catalysis A: General</i> , 2005 , 281, 191-198	5.1	81
425	Surface and Pore Structure Assessment of Hierarchical MFI Zeolites by Advanced Water and Argon Sorption Studies. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18816-18823	3.8	80
424	Modeling the high-temperature catalytic partial oxidation of methane over platinum gauze: Detailed gas-phase and surface chemistries coupled with 3D flow field simulations. <i>Applied Catalysis A: General</i> , 2006 , 303, 166-176	5.1	80
423	Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. <i>Journal of Catalysis</i> , 2010 , 276, 141-151	7.3	79
422	Expanding the Horizons of Hierarchical Zeolites: Beyond Laboratory Curiosity towards Industrial Realization. <i>ChemCatChem</i> , 2011 , 3, 1731-1734	5.2	78
421	Metal©rganic Frameworks/Wood Composites: Green Synthesis of Hierarchical Metal©rganic Framework/Wood Functional Composites with Superior Mechanical Properties (Adv. Sci. 7/2020). <i>Advanced Science</i> , 2020 , 7, 2070040	13.6	78
420	Silver Nanoparticles for Olefin Production: New Insights into the Mechanistic Description of Propyne Hydrogenation. <i>ChemCatChem</i> , 2013 , 5, 3750-3759	5.2	77
419	Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds. <i>Applied Catalysis B: Environmental</i> , 1999 , 23, 59-72	21.8	77

(2016-2015)

418	Impact of pore connectivity on the design of long-lived zeolite catalysts. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1591-4	16.4	76
4 ¹ 7	Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. <i>Chemical Society Reviews</i> , 2020 , 49, 3764-3782	58.5	76
416	Nanoplatelet-based reconstructed hydrotalcites: towards more efficient solid base catalysts in aldol condensations. <i>Chemical Communications</i> , 2005 , 1453-5	5.8	76
415	Structure and Reactivity of Supported Hybrid Platinum Nanoparticles for the Flow Hydrogenation of Functionalized Nitroaromatics. <i>ACS Catalysis</i> , 2015 , 5, 3767-3778	13.1	74
414	Mesoporous zeolites as enzyme carriers: Synthesis, characterization, and application in biocatalysis. <i>Catalysis Today</i> , 2011 , 168, 28-37	5.3	74
413	Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene. <i>Journal of Catalysis</i> , 2008 , 259, 85-95	7.3	74
412	Descriptors for High-Performance Nitrogen-Doped Carbon Catalysts in Acetylene Hydrochlorination. <i>ACS Catalysis</i> , 2018 , 8, 1114-1121	13.1	74
411	Prospectives for bio-oil upgrading via esterification over zeolite catalysts. <i>Catalysis Today</i> , 2014 , 235, 176-183	5.3	73
410	In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. <i>Nature Chemistry</i> , 2012 , 4, 739-45	17.6	73
409	Properties and Functions of Hierarchical Ferrierite Zeolites Obtained by Sequential Post-Synthesis Treatments. <i>Chemistry of Materials</i> , 2010 , 22, 4679-4689	9.6	73
408	NO Adsorption on Ex-Framework [Fe,X]MFI Catalysts: Novel IR Bands and Evaluation of Assignments. <i>Catalysis Letters</i> , 2002 , 80, 129-138	2.8	73
407	Design of Local Atomic Environments in Single-Atom Electrocatalysts for Renewable Energy Conversions. <i>Advanced Materials</i> , 2021 , 33, e2003075	24	73
406	Deactivation mechanisms of tin-zeolites in biomass conversions. <i>Green Chemistry</i> , 2016 , 18, 1249-1260	10	72
405	Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. <i>Nature Catalysis</i> , 2020 , 3, 376-385	36.5	71
404	Hierarchical Silicoaluminophosphates by Postsynthetic Modification: Influence of Topology, Composition, and Silicon Distribution. <i>Chemistry of Materials</i> , 2014 , 26, 4552-4562	9.6	71
403	Mesoporous ZSM-5 zeolites prepared by a two-step route comprising sodium aluminate and acid treatments. <i>Microporous and Mesoporous Materials</i> , 2010 , 128, 91-100	5.3	71
402	Evidence of the vital role of the pore network on various catalytic conversions of N2O over Fe-silicalite and Fe-SBA-15 with the same iron constitution. <i>Applied Catalysis B: Environmental</i> , 2006 , 62, 244-254	21.8	71
401	Catalyst design for natural-gas upgrading through oxybromination chemistry. <i>Nature Chemistry</i> , 2016 , 8, 803-9	17.6	70

400	Towards a sustainable manufacture of hierarchical zeolites. <i>ChemSusChem</i> , 2014 , 7, 753-64	8.3	69
399	Shaped RuO2/SnO2Al2O3 Catalyst for Large-Scale Stable Cl2 Production by HCl Oxidation. <i>ChemCatChem</i> , 2011 , 3, 657-660	5.2	69
398	Ein stabiler Bingle-sitePalladiumkatalysator fl Hydrierungen. Angewandte Chemie, 2015, 127, 11417-11	428	67
397	Single atom catalysis: a decade of stunning progress and the promise for a bright future. <i>Nature Communications</i> , 2020 , 11, 4302	17.4	67
396	Design of Single Gold Atoms on Nitrogen-Doped Carbon for Molecular Recognition in Alkyne Semi-Hydrogenation. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 504-509	16.4	67
395	Ammonia Dissociation on Pt{100}, Pt{111}, and Pt{211}: A Comparative Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17551-17557	3.8	66
394	Zinc-Rich Copper Catalysts Promoted by Gold for Methanol Synthesis. ACS Catalysis, 2015, 5, 5607-5616	13.1	65
393	Hydroisomerization and hydrocracking of linear and multibranched long model alkanes on hierarchical Pt/ZSM-22 zeolite. <i>Catalysis Today</i> , 2013 , 218-219, 135-142	5.3	65
392	Atom-by-Atom Resolution of Structure-Function Relations over Low-Nuclearity Metal Catalysts. Angewandte Chemie - International Edition, 2019 , 58, 8724-8729	16.4	64
391	Hierarchical Zeolites by Desilication: Occurrence and Catalytic Impact of Recrystallization and Restructuring. <i>Crystal Growth and Design</i> , 2013 , 13, 5025-5035	3.5	64
390	Solvent-Mediated Reconstruction of the Metal Drganic Framework HKUST-1 (Cu3(BTC)2). <i>Advanced Functional Materials</i> , 2014 , 24, 3855-3865	15.6	64
389	Mechanism and kinetics of direct N2O decomposition over Fe-MFI zeolites with different iron speciation from temporal analysis of products. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 22586-95	3.4	64
388	Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene. <i>Applied Catalysis B: Environmental</i> , 2001 , 30, 399-408	21.8	64
387	Hierarchical high-silica zeolites as superior base catalysts. <i>Chemical Science</i> , 2014 , 5, 677-684	9.4	63
386	Nanoscale engineering of catalytic materials for sustainable technologies. <i>Nature Nanotechnology</i> , 2021 , 16, 129-139	28.7	62
385	Gas-Phase Oxidation of Glycerol to Dihydroxyacetone over Tailored Iron Zeolites. <i>ACS Catalysis</i> , 2015 , 5, 1453-1461	13.1	61
384	Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts. <i>ChemSusChem</i> , 2013 , 6, 1646-50	8.3	61
383	Towards more efficient monodimensional zeolite catalysts: n-alkane hydro-isomerisation on hierarchical ZSM-22. <i>Catalysis Science and Technology</i> , 2011 , 1, 1331	5.5	61

382	Mechanism B erformance Relationships of Metal Oxides in Catalyzed HCl Oxidation. <i>ACS Catalysis</i> , 2011 , 1, 583-590	13.1	60	
381	Periodic DFT study of the structural and electronic properties of bulk CoAl2O4 spinel. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 988-95	3.4	60	
380	Interplay of Properties and Functions upon Introduction of Mesoporosity in ITQ-4 Zeolite. <i>Advanced Functional Materials</i> , 2010 , 20, 1441-1450	15.6	59	
379	Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1775-1779	16.4	58	
378	Semihydrogenation of Acetylene on Indium Oxide: Proposed Single-Ensemble Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10755-10760	16.4	58	
377	Stability, reutilization, and scalability of activated hydrotalcites in aldol condensation. <i>Applied Catalysis A: General</i> , 2008 , 342, 119-125	5.1	58	
376	Tailoring the framework composition of carbon nitride to improve the catalytic efficiency of the stabilised palladium atoms. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16393-16403	13	57	
375	Supported CeO2 catalysts in technical form for sustainable chlorine production. <i>Applied Catalysis B: Environmental</i> , 2013 , 132-133, 123-131	21.8	57	
374	Temporal Analysis of Products Study of HCl Oxidation on Copper- and Ruthenium-Based Catalysts <i>Journal of Physical Chemistry C</i> , 2011 , 115, 1056-1063	3.8	57	
373	On the location, strength and accessibility of Brfisted acid sites in hierarchical ZSM-5 particles. <i>Catalysis Today</i> , 2012 , 198, 3-11	5.3	56	
372	Hierarchy Brings Function: Mesoporous Clinoptilolite and L Zeolite Catalysts Synthesized by Tandem Acid B ase Treatments. <i>Chemistry of Materials</i> , 2013 , 25, 1947-1959	9.6	56	
371	Influence of the Divalent Cation on the Thermal Activation and Reconstruction of Hydrotalcite-like Compounds. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3642-3650	3.8	56	
370	Selectivity-directing factors of ammonia oxidation over PGM gauzes in the Temporal Analysis of Products reactor: Primary interactions of NH3 and O2. <i>Journal of Catalysis</i> , 2004 , 227, 90-100	7.3	56	
369	Perovskite membranes in ammonia oxidation: towards process intensification in nitric acid manufacture. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1112-1115	16.4	56	
368	NO-Assisted N2O Decomposition over ex-Framework FeZSM-5: Mechanistic Aspects. <i>Catalysis Letters</i> , 2001 , 77, 7-13	2.8	56	
367	Promoted ceria catalysts for alkyne semi-hydrogenation. <i>Journal of Catalysis</i> , 2015 , 324, 69-78	7-3	55	
366	Decoupling porosity and compositional effects on desilicated ZSM-5 zeolites for optimal alkylation performance. <i>Catalysis Science and Technology</i> , 2012 , 2, 759	5.5	55	
365	Catalyst performance testing: bed dilution revisited. <i>Chemical Engineering Science</i> , 2002 , 57, 4921-4932	4.4	55	

364	Synergistic effects in silverIndium electrocatalysts for carbon dioxide reduction. <i>Journal of Catalysis</i> , 2016 , 343, 266-277	7.3	54
363	A continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. <i>Green Chemistry</i> , 2014 , 16, 1176-1186	10	53
362	CuCrO2 delafossite: a stable copper catalyst for chlorine production. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 9772-5	16.4	53
361	Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. <i>Catalysis Science and Technology</i> , 2013 , 3, 972	5.5	53
360	Decomposition of N20 over hexaaluminate catalysts. <i>Environmental Science & Environmental Science & En</i>	10.3	52
359	Deoxygenation of bio-oil over solid base catalysts: From model to realistic feeds. <i>Applied Catalysis B: Environmental</i> , 2016 , 184, 77-86	21.8	51
358	Tuning Nanomaterials' Characteristics by a Miniaturized In-Line Dispersion P recipitation Method: Application to Hydrotalcite Synthesis. <i>Advanced Materials</i> , 2006 , 18, 2436-2439	24	50
357	On the structure sensitivity of deNOx HC-SCR over Pt-beta catalysts. <i>Journal of Catalysis</i> , 2003 , 218, 117	1 <i>=</i> 132	50
356	On the stability of the thermally decomposed Co-Al hydrotalcite against retrotopotactic transformation. <i>Materials Research Bulletin</i> , 2001 , 36, 1767-1775	5.1	50
355	Catalytic processing of plastic waste on the rise. <i>CheM</i> , 2021 , 7, 1487-1533	16.2	50
354	Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation. <i>Angewandte Chemie</i> , 2016 , 128, 6369-6373	3.6	50
353	Bifunctional Cu/H-ZSM-5 zeolite with hierarchical porosity for hydrocarbon abatement under cold-start conditions. <i>Applied Catalysis B: Environmental</i> , 2014 , 154-155, 161-170	21.8	49
352	Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination. <i>Chemical Science</i> , 2019 , 10, 359-369	9.4	48
351	Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO reduction catalysts. <i>Nature Communications</i> , 2018 , 9, 1477	17.4	48
350	Interfacial acidity in ligand-modified ruthenium nanoparticles boosts the hydrogenation of levulinic acid to gamma-valerolactone. <i>Green Chemistry</i> , 2017 , 19, 2361-2370	10	48
349	A delafossite-based copper catalyst for sustainable Cl2 production by HCl oxidation. <i>Chemical Communications</i> , 2011 , 47, 7173-5	5.8	48
348	Mechanistic origin of the different activity of Rh-ZSM-5 and Fe-ZSM-5 in N2O decomposition. Journal of Catalysis, 2008 , 256, 248-258	7.3	48
347	Mechanism of ammonia oxidation over oxides studied by temporal analysis of products. <i>Journal of Catalysis</i> , 2007 , 250, 240-246	7.3	48

(2018-2002)

346	Formation of Uniform Mesopores in ZSM-5 Zeolite upon Alkaline Post-treatment?. <i>Chemistry Letters</i> , 2002 , 31, 94-95	1.7	48	
345	Aldol condensation of campholenic aldehyde and MEK over activated hydrotalcites. <i>Applied Catalysis B: Environmental</i> , 2007 , 70, 577-584	21.8	46	
344	Operando Synchrotron X-ray Powder Diffraction and Modulated-Excitation Infrared Spectroscopy Elucidate the CO2 Promotion on a Commercial Methanol Synthesis Catalyst. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11031-6	16.4	46	
343	Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply. <i>Journal of Catalysis</i> , 2011 , 278, 167-172	7.3	45	
342	Selectivity-directing factors of ammonia oxidation over PGM gauzes in the Temporal Analysis of Products reactor: Secondary interactions of NH3 and NO. <i>Journal of Catalysis</i> , 2005 , 229, 303-313	7.3	45	
341	Green Synthesis of Hierarchical Metal-Organic Framework/Wood Functional Composites with Superior Mechanical Properties. <i>Advanced Science</i> , 2020 , 7, 1902897	13.6	44	
340	Room-temperature synthesis of Fe B TC from layered iron hydroxides: the influence of precursor organisation. <i>CrystEngComm</i> , 2013 , 15, 9885	3.3	44	
339	Quantifying the Complex Pore Architecture of Hierarchical Faujasite Zeolites and the Impact on Diffusion. <i>Advanced Functional Materials</i> , 2016 , 26, 5621-5630	15.6	44	
338	Heading to Distributed Electrocatalytic Conversion of Small Abundant Molecules into Fuels, Chemicals, and Fertilizers. <i>Joule</i> , 2019 , 3, 2602-2621	27.8	44	
337	Impact of the preparation method and iron impurities in Fe-ZSM-5 zeolites for propylene production via oxidative dehydrogenation of propane with N2O. <i>Applied Catalysis A: General</i> , 2005 , 279, 117-123	5.1	42	
336	Catalytic Oxychlorination versus Oxybromination for Methane Functionalization. <i>ACS Catalysis</i> , 2017 , 7, 1805-1817	13.1	41	
335	Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. <i>Catalysis Science and Technology</i> , 2016 , 6, 1621-1631	5.5	41	
334	Stereo- and Chemoselective Character of Supported CeO2 Catalysts for Continuous-Flow Three-Phase Alkyne Hydrogenation. <i>ChemCatChem</i> , 2014 , 6, 1928-1934	5.2	41	
333	In situ monitoring of desilication of MFI-type zeolites in alkaline medium. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 4822-30	3.6	41	
332	Catalytic reduction of N2O over steam-activated FeZSM-5 zeolite. <i>Applied Catalysis B: Environmental</i> , 2007 , 70, 335-341	21.8	41	
331	Mechanism and kinetics of the selective NO reduction over Co-ZSM-5 studied by the SSITKA technique: 2. Reactivity of NOx-adsorbed species with methane. <i>Journal of Catalysis</i> , 2004 , 225, 179-189	9 ^{7.3}	41	
330	Characterization and performance of Pt-USY in the SCR of NOx with hydrocarbons under lean-burn conditions. <i>Applied Catalysis B: Environmental</i> , 2001 , 29, 285-298	21.8	41	
329	Origin of the Selective Electroreduction of Carbon Dioxide to Formate by Chalcogen Modified Copper. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 7153-7159	6.4	41	

328	Hydroxyapatite, an exceptional catalyst for the gas-phase deoxygenation of bio-oil by aldol condensation. <i>Green Chemistry</i> , 2014 , 16, 4870-4874	10	40
327	Understanding CeO2 as a Deacon catalyst by probe molecule adsorption and in situ infrared characterisations. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 3454-65	3.6	40
326	Toward functional clathrasils: size- and composition-controlled octadecasil nanocrystals by desilication. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7913-7	16.4	40
325	Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nature Nanotechnology, 2021,	28.7	40
324	Role of Carbonaceous Supports and Potassium Promoter on Higher Alcohols Synthesis over CopperIron Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 9604-9618	13.1	40
323	Design of Hierarchical Zeolite Catalysts for the Manufacture of Polyurethane Intermediates. <i>ACS Catalysis</i> , 2015 , 5, 734-743	13.1	39
322	Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation. <i>Green Chemistry</i> , 2014 , 16, 589-593	10	39
321	HCl Oxidation on IrO2-Based Catalysts: From Fundamentals to Scale-Up. ACS Catalysis, 2013, 3, 2813-28	3 22 3.1	39
320	Metal-substituted hexaaluminates for high-temperature N2O abatement. <i>Chemical Communications</i> , 2007 , 619-21	5.8	39
319	Steam-activated FeMFI zeolites as highly efficient catalysts for propane and N2O valorisation via oxidative conversions. <i>Chemical Communications</i> , 2003 , 2152-3	5.8	39
318	Dual-bed catalytic system for NOxN2O removal: a practical application for lean-burn deNOx HC-SCR. <i>Applied Catalysis B: Environmental</i> , 2000 , 25, 191-203	21.8	39
317	Do observations on surface coverage-reactivity correlations always describe the true catalytic process? A case study on ceria. <i>Journal of Catalysis</i> , 2013 , 297, 119-127	7.3	38
316	Opposite Face Sensitivity of CeO2 in Hydrogenation and Oxidation Catalysis. <i>Angewandte Chemie</i> , 2014 , 126, 12265-12268	3.6	38
315	Kinetic aspects and deactivation behaviour of chromia-based catalysts in hydrogen chloride oxidation. <i>Catalysis Science and Technology</i> , 2012 , 2, 2057	5.5	38
314	Mesoporous metallosilicate zeolites by desilication: On the generic pore-inducing role of framework trivalent heteroatoms. <i>Materials Letters</i> , 2009 , 63, 1037-1040	3.3	38
313	Activity of commercial zeolites with iron impurities in direct N2O decomposition. <i>Applied Catalysis B: Environmental</i> , 2006 , 65, 163-167	21.8	38
312	Catalyst performance testing: the influence of catalyst bed dilution on the conversion observed. <i>Chemical Engineering Journal</i> , 2002 , 90, 173-183	14.7	38
311	Extending Accurate Time Distribution and Timeliness Capabilities Over the Air to Enable Future Wireless Industrial Automation Systems. <i>Proceedings of the IEEE</i> , 2019 , 107, 1132-1152	14.3	37

(2014-2015)

Aluminum Redistribution during the Preparation of Hierarchical Zeolites by Desilication. <i>Chemistry - A European Journal</i> , 2015 , 21, 14156-64	4.8	37	
Depleted uranium catalysts for chlorine production. <i>Chemical Science</i> , 2013 , 4, 2209	9.4	37	
Optimal 3-D Landmark Placement for Vehicle Localization Using Heterogeneous Sensors. <i>IEEE Transactions on Vehicular Technology</i> , 2013 , 62, 2987-2999	6.8	37	
Mechanism of ammonia oxidation over PGM (Pt, Pd, Rh) wires by temporal analysis of products and density functional theory. <i>Journal of Catalysis</i> , 2009 , 261, 217-223	7:3	37	
Synthesis of dimethyl carbonate by transesterification of ethylene carbonate over activated dawsonites. <i>ChemSusChem</i> , 2009 , 2, 301-4	8.3	37	
Iron site modification upon alkaline treatment of Fe-ZSM-5 zeolites (Dpportunities for improved N2O decomposition activity. <i>Journal of Catalysis</i> , 2006 , 243, 212-216	7-3	37	
N2O-mediated propane oxidative dehydrogenation over steam-activated iron zeolites. <i>Journal of Catalysis</i> , 2004 , 223, 382-388	7.3	37	
On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. <i>Biomass Conversion and Biorefinery</i> , 2017 , 7, 331-342	2.3	36	
Solvothermally-Prepared Cu O Electrocatalysts for CO Reduction with Tunable Selectivity by the Introduction of p-Block Elements. <i>ChemSusChem</i> , 2017 , 10, 1255-1265	8.3	36	
Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. <i>Catalysis Science and Technology</i> , 2017 , 7, 64-74	5.5	36	
Ceria in Hydrogenation Catalysis: High Selectivity in the Conversion of Alkynes to Olefins. <i>Angewandte Chemie</i> , 2012 , 124, 8748-8751	3.6	36	
Reforming Dawsonite by Memory Effect of AACH-Derived Aluminas. <i>Chemistry of Materials</i> , 2007 , 19, 4783-4790	9.6	36	
Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. <i>Nanoscale</i> , 2014 , 6, 13476-82	7.7	35	
Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion. <i>Langmuir</i> , 2015 , 31, 1242-7	4	35	
Accelerated generation of intracrystalline mesoporosity in zeolites by microwave-mediated desilication. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 2959-63	3.6	35	
Effect of NO on the SCR of N2O with propane over Fe-zeolites. <i>Applied Catalysis B: Environmental</i> , 2004 , 47, 177-187	21.8	35	
Techno-Economic Analysis of a Glycerol Biorefinery. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16563-16572	8.3	35	
Gallium-modified zeolites for the selective conversion of bio-based dihydroxyacetone into C1 []4 alkyl lactates. <i>Journal of Molecular Catalysis A</i> , 2014 , 388-389, 141-147		34	
	Depleted uranium catalysts for chlorine production. Chemical Science, 2013, 4, 2209 Optimal 3-D Landmark Placement for Vehicle Localization Using Heterogeneous Sensors. IEEE Transactions on Vehicular Technology, 2013, 62, 2987-2999 Mechanism of ammonia oxidation over PGM (Pt. Pd. Rh) wires by temporal analysis of products and density functional theory. Journal of Catalysis, 2009, 261, 217-223 Synthesis of dimethyl carbonate by transesterification of ethylene carbonate over activated dawsonites. ChemSusChem, 2009, 2, 301-4 Iron site modification upon alkaline treatment of Fe-25M-5 zeolitesDpportunities for improved N2O decomposition activity. Journal of Catalysis, 2006, 243, 212-216 N2O-mediated propane oxidative dehydrogenation over steam-activated iron zeolites. Journal of Catalysis, 2004, 223, 382-388 On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. Biomass Conversion and Biorefinery, 2017, 7, 331-342 Solvothermally-Prepared Cu O Electrocatalysts for CO Reduction with Tunable Selectivity by the Introduction of p-Block Elements. ChemSusChem, 2017, 10, 1255-1265 Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catalysis Science and Technology, 2017, 7, 64-74 Ceria in Hydrogenation Catalysis: High Selectivity in the Conversion of Alkynes to Olefins. Angewandte Chemie, 2012, 124, 8748-8751 Reforming Dawsonite by Memory Effect of AACH-Derived Aluminas. Chemistry of Materials, 2007, 19, 4783-4790 Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale, 2014, 6, 13476-82 Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion. Langmuir, 2015, 31, 1242-7 Accelerated generation of intracrystalline mesoporosity in zeolites by microwave-mediated desilication. Physical Ch	Depleted uranium catalysts for chlorine production. Chemical Science, 2013, 4, 2209 94 Optimal 3-D Landmark Placement for Vehicle Localization Using Heterogeneous Sensors. IEEE Transactions on Vehicular Technology, 2013, 62, 2987-2999 Mechanism of ammonia oxidation over PCM (Pt, Pd, Rh) wires by temporal analysis of products and density functional theory. Journal of Catalysis, 2009, 261, 217-223 Synthesis of dimethyl carbonate by transesterification of ethylene carbonate over activated dawsonites. ChemSusChem, 2009, 2, 301-4 Iron site modification upon alkaline treatment of Fe-ZSM-5 zeolitesDpportunities for improved N2O decomposition activity. Journal of Catalysis, 2006, 243, 212-216 N2O-mediated propane oxidative dehydrogenation over steam-activated iron zeolites. Journal of Catalysis, 2004, 223, 382-388 On the influence of SEAI ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. Biomass Conversion and Biorefinery, 2017, 7, 331-342 Solvothermally-Prepared Cu O Electrocatalysts for CO Reduction with Tunable Selectivity by the Introduction of p-Block Elements. ChemSusChem, 2017, 10, 1255-1265 Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catalysis Science and Technology, 2017, 7, 64-74 Ceria in Hydrogenation Catalysis: High Selectivity in the Conversion of Alkynes to Olefins. Angewandee Chemie, 2012, 124, 8748-8751 Reforming Dawsonite by Memory Effect of AACH-Derived Aluminas. Chemistry of Materials, 2007, 19, 4783-4790 Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale, 2014, 6, 13476-82 Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion. Langmulr, 2015, 31, 1242-7 Accelerated generation of intracrystalline messoporosity in zeolites by microwave-mediated desilication. Physica	A European Journal, 2015, 21, 14156-64 Depleted uranium catalysts for chlorine production. Chemical Science, 2013, 4, 2209 94 37 Optimal 3-D Landmark Placement for Vehicle Localization Using Heterogeneous Sensors. IEEE Transactions on Vehicular Technology, 2013, 62, 2987-2999 Mechanism of ammonia oxidation over PGM (Pt., Pd., Rh) wires by temporal analysis of products and density functional theory. Journal of Catalysis, 2009, 261, 217-223 Synthesis of dimethyl carbonate by transesterification of ethylene carbonate over activated dawsonites. ChemSusChem, 2009, 2, 301-4 Iron site modification upon alkaline treatment of Fe-ZSM-5 zeolitesDipportunities for improved N2O decomposition activity. Journal of Catalysis, 2006, 243, 212-216 N2O-mediated propane oxidative dehydrogenation over steam-activated iron zeolites. Journal of Catalysis, 2004, 223, 382-388 On the influence of St-Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. Biomass Conversion and Biarefinery, 2017, 7, 331-342 Solvothermally-Prepared Cu O Electrocatalysts for CO Reduction with Tunable Selectivity by the Introduction of p-Block Elements. ChemSusChem, 2017, 10, 1255-1265 Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catalysis Science and Technology, 2017, 7, 64-74 Geria in Hydrogenation Catalysis: High Selectivity in the Conversion of Alkynes to Olefins. Angewandte Chemie, 2012, 124, 8748-8751 Reforming Dawsonite by Memory Effect of AACH-Derived Aluminas. Chemistry of Materials, 2007, 19, 4783-4790 Beyond the use of modifiers in selective alkyne hydrogenation: silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale, 2014, 6, 13476-82 Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion. Langmuir, 2015, 31, 1242-7 121.8 35 Effect of NO on the SCR of N2O with propane over Fe-zeo

292	Assessment of the low-temperature EnviNOx [®] variant for catalytic N2O abatement over steam-activated FeZSM-5. <i>Applied Catalysis B: Environmental</i> , 2008 , 77, 248-254	21.8	34
291	Design of a technical MgAl mixed oxide catalyst for the continuous manufacture of glycerol carbonate. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16200-16211	13	33
2 90	Design of Base Zeolite Catalysts by Alkali-Metal Grafting in Alcoholic Media. ACS Catalysis, 2015, 5, 538	8-15,3196	33
289	Towards sustainable manufacture of epichlorohydrin from glycerol using hydrotalcite-derived basic oxides. <i>Green Chemistry</i> , 2018 , 20, 148-159	10	33
288	Evidence of radical chemistry in catalytic methane oxybromination. <i>Nature Catalysis</i> , 2018 , 1, 363-370	36.5	33
287	Rediscovering zeolite mechanochemistry [A pathway beyond current synthesis and modification boundaries. <i>Microporous and Mesoporous Materials</i> , 2014 , 194, 106-114	5.3	33
286	Olefins from Natural Gas by Oxychlorination. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1367	0±63 ₄ 67	74 3
285	The virtue of defects: stable bromine production by catalytic oxidation of hydrogen bromide on titanium oxide. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8628-33	16.4	33
284	Hierarchically Structured Zeolite Bodies: Assembling Micro-, Meso-, and Macroporosity Levels in Complex Materials with Enhanced Properties. <i>Advanced Functional Materials</i> , 2012 , 22, 2509-2518	15.6	33
283	Industrial RuO2-Based Deacon Catalysts: Carrier Stabilization and Active Phase Content Optimization. <i>ChemCatChem</i> , 2013 , 5, 748-756	5.2	33
282	Theoretical Studies of N2O Adsorption and Reactivity to N2and NO on Rh(111). <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17921-17927	3.4	33
281	High-throughput experimentation in catalyst testing and in kinetic studies for heterogeneous catalysis. <i>Catalysis Today</i> , 2003 , 81, 457-471	5.3	33
2 80	Biomass valorisation over polyoxometalate-based catalysts. <i>Green Chemistry</i> , 2021 , 23, 18-36	10	33
279	Accelerated study of the citralEcetone condensation kinetics over activated MgAl hydrotalcite. <i>Applied Catalysis A: General</i> , 2007 , 325, 121-129	5.1	32
278	Structure and catalytic processes of N-containing species on Rh(111) from first principles. <i>Journal of Catalysis</i> , 2005 , 232, 179-185	7.3	32
277	Hierarchical NaY Zeolites for Lactic Acid Dehydration to Acrylic Acid. ChemCatChem, 2016, 8, 1507-1514	5.2	31
276	Preserved in a Shell: High-Performance Graphene-Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12297-12304	16.4	31
275	Na-dawsonite derived aluminates for DMC production by transesterification of ethylene carbonate. <i>Applied Catalysis A: General</i> , 2009 , 365, 252-260	5.1	31

(2007-2009)

274	Epoxidation catalysts derived from aluminium and gallium dawsonites. <i>Applied Catalysis A: General</i> , 2009 , 371, 43-53	5.1	31	
273	Discriminating Reasons for Selectivity Enhancement of CO in Alkyne Hydrogenation on Palladium. Journal of Physical Chemistry C, 2008 , 112, 9346-9350	3.8	31	
272	Micro-kinetic analysis of direct N2O decomposition over steam-activated Fe-silicalite from transient experiments in the TAP reactor. <i>Catalysis Today</i> , 2007 , 121, 197-203	5.3	31	
271	Structure and reactivity of cerialirconia catalysts for bromine and chlorine production via the oxidation of hydrogen halides. <i>Journal of Catalysis</i> , 2015 , 331, 128-137	7.3	30	
270	Enhanced Base-Free Formic Acid Production from CO on Pd/g-C N by Tuning of the Carrier Defects. <i>ChemSusChem</i> , 2018 , 11, 2859-2869	8.3	30	
269	Catalytic conversion of N2O over FeZSM-5 zeolite in the presence of CO and NO. <i>Applied Catalysis B: Environmental</i> , 2004 , 54, 115-123	21.8	30	
268	A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2529-2536		30	
267	Electrochemical Reduction of Carbon Dioxide to 1-Butanol on Oxide-Derived Copper. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21072-21079	16.4	29	
266	Die facettenreiche Reaktivit heterogener Einzelatom-Katalysatoren. <i>Angewandte Chemie</i> , 2018 , 130, 15538-15552	3.6	29	
265	Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand. <i>Angewandte Chemie</i> , 2017 , 129, 1801-1805	3.6	28	
264	New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy. <i>Catalysis Science and Technology</i> , 2020 , 10, 1975-199	9 ē ·5	28	
263	Lanthanide compounds as catalysts for the one-step synthesis of vinyl chloride from ethylene. <i>Journal of Catalysis</i> , 2016 , 344, 524-534	7.3	28	
262	Silver nanoparticles supported on passivated silica: preparation and catalytic performance in alkyne semi-hydrogenation. <i>Dalton Transactions</i> , 2014 , 43, 15138-42	4.3	28	
261	Carbon-templated hexaaluminates with enhanced surface area and catalytic performance. <i>Journal of Catalysis</i> , 2008 , 257, 152-162	7.3	28	
260	Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO hydrogenation. <i>Nature Communications</i> , 2021 , 12, 1960	17.4	28	
259	When catalyst meets reactor: continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. <i>Catalysis Science and Technology</i> , 2015 , 5, 142-149	5.5	27	
258	Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents. <i>ChemSusChem</i> , 2016 , 9, 2380-90	8.3	27	
257	Deactivation and regeneration of iron-containing MFI zeolites in propane oxidative dehydrogenation by N2O. <i>Journal of Catalysis</i> , 2007 , 249, 123-133	7-3	27	

256	N2O Decomposition over Liquid Ion-Exchanged Fe-BEA Catalysts: Correlation Between Activity and the IR Intensity of Adsorbed NO at 1874 cm. Catalysis Letters, 2004, 93, 113-120	2.8	27
255	Direct N2O decomposition over ex-framework FeMFI catalysts. Role of extra-framework species. <i>Catalysis Communications</i> , 2002 , 3, 19-23	3.2	27
254	Tailoring Nitrogen-Doped Carbons as Hosts for Single-Atom Catalysts. <i>ChemCatChem</i> , 2019 , 11, 2812-28	33.0	26
253	Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites. <i>Journal of Catalysis</i> , 2015 , 330, 93-105	7-3	26
252	Hydrogenolysis of methylcyclopentane over the bimetallic IrAu/FAl2O3 catalysts. <i>Applied Surface Science</i> , 2007 , 253, 5888-5893	6.7	26
251	In-line dispersionprecipitation method for the synthesis of metal-substituted dawsonites. Genesis of oxide materials with superior properties. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2886-2889		26
250	Application of Mercury Intrusion Porosimetry for Characterization of Combined Micro- and Mesoporous Zeolites. <i>Particle and Particle Systems Characterization</i> , 2006 , 23, 101-106	3.1	26
249	Steam activation of MgAl hydrotalcite. Influence on the properties of the derived mixed oxides. <i>Microporous and Mesoporous Materials</i> , 2006 , 96, 102-108	5.3	26
248	Lanthanum ferrite membranes in ammonia oxidation: Opportunities for pocket-sized[hitric acid plants. <i>Catalysis Today</i> , 2005 , 105, 436-442	5.3	26
247	Transient studies on the mechanism of N2O activation and reaction with CO and C3H8 over Fe-silicalite. <i>Journal of Catalysis</i> , 2005 , 233, 442-452	7-3	26
246	A quantitative roadmap for China towards carbon neutrality in 2060 using methanol and ammonia as energy carriers. <i>IScience</i> , 2021 , 24, 102513	6.1	26
245	On the activation of Pt/Al2O3 catalysts in HC-SCR by sintering: determination of redox-active sites using Multitrack. <i>Applied Catalysis B: Environmental</i> , 2003 , 46, 687-702	21.8	25
244	Glycerol oxidehydration to pyruvaldehyde over silver-based catalysts for improved lactic acid production. <i>Green Chemistry</i> , 2016 , 18, 4682-4692	10	25
243	Sustainable Continuous Flow Valorization of EValerolactone with Trioxane to EMethylene-EValerolactone over Basic Beta Zeolites. <i>ChemSusChem</i> , 2019 , 12, 2628-2636	8.3	24
242	Europium Oxybromide Catalysts for Efficient Bromine Looping in Natural Gas Valorization. Angewandte Chemie - International Edition, 2017 , 56, 9791-9795	16.4	23
241	Environmental and economic assessment of glycerol oxidation to dihydroxyacetone over technical iron zeolite catalysts. <i>Reaction Chemistry and Engineering</i> , 2016 , 1, 106-118	4.9	23
240	Hierarchical zeolites overcome all obstacles: next stop industrial implementation. <i>Chimia</i> , 2013 , 67, 327-	-323	23
239	Mechanism and micro-kinetics of direct N2O decomposition over BaFeAl11O19 hexaaluminate and comparison with Fe-MFI zeolites. <i>Applied Catalysis B: Environmental</i> , 2010 , 99, 66-73	21.8	23

(2013-2006)

238	Importance of the lifetime of oxygen species generated by N2O decomposition for hydrocarbon activation over Fe-silicalite. <i>Applied Catalysis B: Environmental</i> , 2006 , 64, 35-41	21.8	23	
237	In situ studies during thermal activation of dawsonite-type compounds to oxide catalysts. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1222-1229		23	
236	Framework composition effects on the performance of steam-activated FeMFI zeolites in the N2O-mediated propane oxidative dehydrogenation to propylene. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 20529-38	3.4	23	
235	Magnetic properties of CoAl, NiAl, and MgAl hydrotalcites and the oxides formed upon their thermal decomposition. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2370-2375		23	
234	Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. <i>One Earth</i> , 2021 , 4, 565-583	8.1	23	
233	Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts. <i>Topics in Catalysis</i> , 2017 , 60, 1522-1536	2.3	22	
232	Reconstruction of Dawsonite by Alumina Carbonation in (NH4)2CO3: Requisites and Mechanism. <i>Chemistry of Materials</i> , 2008 , 20, 3973-3982	9.6	22	
231	Electrochemical characterization of iron sites in ex-framework FeZSM-5. <i>Journal of Electroanalytical Chemistry</i> , 2002 , 519, 72-84	4.1	22	
230	Oxychlorination-Dehydrochlorination Chemistry on Bifunctional Ceria Catalysts for Intensified Vinyl Chloride Production. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3068-72	16.4	22	
229	Superior activity of rutile-supported ruthenium nanoparticles for HCl oxidation. <i>Catalysis Science and Technology</i> , 2013 , 3, 2555	5.5	21	
228	Preparation of organic-functionalized mesoporous ZSM-5 zeolites by consecutive desilication and silanization. <i>Materials Chemistry and Physics</i> , 2011 , 127, 278-284	4.4	21	
227	The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 9211-9	3.6	21	
226	Interplay between surface chemistry and performance of rutile-type catalysts for halogen production. <i>Chemical Science</i> , 2016 , 7, 2996-3005	9.4	20	
225	Generation of basic centers in high-silica zeolites and their application in gas-phase upgrading of bio-oil. <i>ChemSusChem</i> , 2014 , 7, 1729-38	8.3	20	
224	Perturbing the properties of layered double hydroxides by continuous coprecipitation with short residence time. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5878		20	
223	Evaluation of catalysts for N2O abatement in fluidized-bed combustion. <i>Applied Catalysis B: Environmental</i> , 2009 , 90, 83-88	21.8	20	
222	Perovskite Membranes in Ammonia Oxidation: Towards Process Intensification in Nitric Acid Manufacture. <i>Angewandte Chemie</i> , 2005 , 117, 1136-1139	3.6	20	
221	Catalytic Bromine Recovery: An Enabling Technology for Emerging Alkane Functionalization Processes. <i>ChemCatChem</i> , 2013 , 5, 3520-3523	5.2	19	

220	Spray deposition method for the synthesis of supported catalysts with superior metal dispersion. <i>Microporous and Mesoporous Materials</i> , 2011 , 146, 76-81	5.3	19	
219	Cyclic Process for Propylene Production via Oxidative Dehydrogenation of Propane with N2O over FeZSM-5. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 455-462	3.9	19	
218	Selective Methane Functionalization via Oxyhalogenation over Supported Noble Metal Nanoparticles. <i>ACS Catalysis</i> , 2019 , 9, 1710-1725	13.1	19	
217	Status and prospects of the decentralised valorisation of natural gas into energy and energy carriers. <i>Chemical Society Reviews</i> , 2021 , 50, 2984-3012	58.5	19	
216	Mapping the Birth and Evolution of Pores upon Thermal Activation of Layered Hydroxides. <i>Chemistry of Materials</i> , 2017 , 29, 4052-4062	9.6	18	
215	Laser-Microstructured Copper Reveals Selectivity Patterns in the Electrocatalytic Reduction of CO2. <i>CheM</i> , 2020 , 6, 1707-1722	16.2	18	
214	Surface state during activation and reaction of high-performing multi-metallic alkyne hydrogenation catalysts. <i>Chemical Science</i> , 2011 , 2, 1379	9.4	18	
213	Pressure and Materials Effects on the Selectivity of RuO2 in NH3 Oxidation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 16660-16668	3.8	18	
212	Mechanistic peculiarities of the N2O reduction by CH4 over Fe-silicalite. <i>Catalysis Today</i> , 2007 , 119, 243	-346	18	
211	Evidences of the origin of N2O in the high-temperature NH3 oxidation over Pt-Rh gauze. <i>Chemical Communications</i> , 2004 , 376-7	5.8	18	
210	Highly Efficient Fe-silicalite Zeolite in Direct Propane Ammoxidation with N2O and O2. <i>Catalysis Letters</i> , 2005 , 104, 163-167	2.8	18	
209	Adsorption of Nitrous Oxide on Silicalite-1. Journal of Chemical & Engineering Data, 2002, 47, 587-5	89 8	18	
208	Bifunctional Hierarchical Zeolite-Supported Silver Catalysts for the Conversion of Glycerol to Allyl Alcohol. <i>ChemCatChem</i> , 2017 , 9, 2195-2202	5.2	17	
207	Tunability and Scalability of Single-Atom Catalysts Based on Carbon Nitride. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5223-5230	8.3	17	
206	Carrier-Induced Modification of Palladium Nanoparticles on Porous Boron Nitride for Alkyne Semi-Hydrogenation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19639-19644	16.4	17	
205	Advanced visualization strategies bridge the multidimensional complexity of technical catalysts. <i>Current Opinion in Chemical Engineering</i> , 2013 , 2, 304-311	5.4	17	
204	Stability and inter-conversion of synthetic dawsonites in aqueous media. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 7048-7058	5.5	17	
203	Theoretical investigation of the inversion parameter in Co3BAlsO4 (s=0B) spinel structures. <i>Solid State Ionics</i> , 2009 , 180, 1011-1016	3.3	17	

202	Kinetics of the N2O+CO reaction over steam-activated FeZSM-5. <i>Applied Catalysis A: General</i> , 2007 , 327, 66-72	5.1	17	
201	Alkaline treatment of iron-containing MFI zeolites. Influence on mesoporosity development and iron speciation. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 20369-78	3.4	17	
200	Distinct activity and time-on-stream behavior of pure Pt and Rh metals and PtRh alloys in the high-temperature NO decomposition. <i>Applied Catalysis A: General</i> , 2006 , 298, 73-79	5.1	17	
199	Activation by sintering of Pt-beta catalysts in deNO HC-SCR. StructureEctivity relationships. <i>Catalysis Communications</i> , 2003 , 4, 165-170	3.2	17	
198	Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 15269-77	3.6	17	
197	Atomically precise control in the design of low-nuclearity supported metal catalysts. <i>Nature Reviews Materials</i> ,	73.3	17	
196	Molecular Understanding of Enyne Hydrogenation over Palladium and Copper Catalysts. <i>ChemCatChem</i> , 2012 , 4, 1420-1427	5.2	16	
195	Acidity and accessibility studies on mesoporous ITQ-4 zeolite. <i>Catalysis Today</i> , 2010 , 152, 11-16	5.3	16	
194	Rational modeling of the CPO of methane over platinum gauze. <i>Catalysis Today</i> , 2007 , 119, 311-316	5.3	16	
193	Thermal decomposition of hydrotalcite-like compounds studied by a novel tapered element oscillating microbalance (TEOM). <i>Thermochimica Acta</i> , 2006 , 444, 75-82	2.9	16	
192	N2O-mediated propane oxidative dehydrogenation over Fe-zeolites. TEOM studies for continuous propylene production in a cyclically-operated reactor. <i>Chemical Engineering Science</i> , 2004 , 59, 5535-5543	3 ^{4·4}	16	
191	Incorporation of appropriate contact angles in textural characterization by mercury porosimetry. <i>Studies in Surface Science and Catalysis</i> , 2002 , 144, 91-98	1.8	16	
190	Halogen-Dependent Surface Confinement Governs Selective Alkane Functionalization to Olefins. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5877-5881	16.4	16	
189	Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. <i>ChemCatChem</i> , 2019 , 11, 457-464	5.2	16	
188	Tunable Catalytic Performance of Palladium Nanoparticles for H2O2 Direct Synthesis via Surface-Bound Ligands. <i>ACS Catalysis</i> , 2020 , 10, 5202-5207	13.1	16	
187	. Catalysis Science and Technology, 2018 , 8, 187-200	5.5	16	
186	Selective Methane Oxybromination over Nanostructured Ceria Catalysts. ACS Catalysis, 2018, 8, 291-303	313.1	16	
185	Nitride-Derived Copper Modified with Indium as a Selective and Highly Stable Catalyst for the Electroreduction of Carbon Dioxide. <i>ChemSusChem</i> , 2019 , 12, 3501-3508	8.3	15	

184	Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over CuNiAl Catalysts. <i>ChemCatChem</i> , 2015 , 7, 1551-1558	5.2	15	
183	Mechanism of Ethylene Oxychlorination on Ceria. ACS Catalysis, 2018, 8, 2651-2663	13.1	15	
182	Catalyst and Process Design for the Continuous Manufacture of Rare Sugar Alcohols by Epimerization-Hydrogenation of Aldoses. <i>ChemSusChem</i> , 2016 , 9, 3407-3418	8.3	15	
181	Epitaxially Directed Iridium Nanostructures on Titanium Dioxide for the Selective Hydrodechlorination of Dichloromethane. <i>ACS Catalysis</i> , 2020 , 10, 528-542	13.1	15	
180	Impact of hybrid CO2-CO feeds on methanol synthesis over In2O3-based catalysts. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119878	21.8	15	
179	Design of Single Gold Atoms on Nitrogen-Doped Carbon for Molecular Recognition in Alkyne Semi-Hydrogenation. <i>Angewandte Chemie</i> , 2019 , 131, 514-519	3.6	15	
178	Performance of Metal-Catalyzed Hydrodebromination of Dibromomethane Analyzed by Descriptors Derived from Statistical Learning. <i>ACS Catalysis</i> , 2020 , 10, 6129-6143	13.1	15	
177	Alkaline-assisted stannation of beta zeolite as a scalable route to Lewis-acid catalysts for the valorisation of renewables. <i>New Journal of Chemistry</i> , 2016 , 40, 4136-4139	3.6	14	
176	Selective Propylene Production via Propane Oxychlorination on Metal Phosphate Catalysts. <i>ACS Catalysis</i> , 2019 , 9, 5772-5782	13.1	14	
175	Structure Sensitivity and Evolution of Nickel-Bearing Nitrogen-Doped Carbons in the Electrochemical Reduction of CO2. <i>ACS Catalysis</i> , 2020 , 10, 3444-3454	13.1	14	
174	Structuring hybrid palladium nanoparticles in metallic monolithic reactors for continuous-flow three-phase alkyne hydrogenation. <i>Reaction Chemistry and Engineering</i> , 2016 , 1, 454-462	4.9	14	
173	Insights into the Mechanism of Zeolite Detemplation by Positron Annihilation Lifetime Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 25451-25461	3.8	14	
172	Structuring zeolite bodies for enhanced heat-transfer properties. <i>Microporous and Mesoporous Materials</i> , 2015 , 208, 196-202	5.3	14	
171	A TEOM-MS study on the interaction of N2O with a hydrotalcite-derived multimetallic mixed oxide catalyst. <i>Applied Catalysis A: General</i> , 2002 , 225, 87-100	5.1	14	
170	Elucidation of the Surprising Role of NO in N2O Decomposition over FeZSM-5. <i>Kinetics and Catalysis</i> , 2003 , 44, 639-647	1.5	14	
169	Transient Studies of Direct N2O Decomposition over PtRh Gauze Catalyst. Mechanistic and Kinetic Aspects of Oxygen Formation. <i>Catalysis Letters</i> , 2003 , 91, 211-216	2.8	14	
168	Catalytic halogenation of methane: a dream reaction with practical scope?. <i>Catalysis Science and Technology</i> , 2019 , 9, 4515-4530	5.5	13	
167	Operando Photoelectron Photoion Coincidence Spectroscopy Unravels Mechanistic Fingerprints of Propane Activation by Catalytic Oxyhalogenation. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 856-8	6 ^{6.4}	13	

(2016-2016)

166	Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15619-15623	16.4	13
165	Operando Synchrotron X-ray Powder Diffraction and Modulated-Excitation Infrared Spectroscopy Elucidate the CO2 Promotion on a Commercial Methanol Synthesis Catalyst. <i>Angewandte Chemie</i> , 2016 , 128, 11197-11202	3.6	13
164	Phase-controlled synthesis of iron phosphates via phosphation of 昨eOOH nanorods. <i>CrystEngComm</i> , 2016 , 18, 3174-3185	3.3	13
163	Selective dehydrogenation of bioethanol to acetaldehyde over basic USY zeolites. <i>Catalysis Science and Technology</i> , 2016 , 6, 2706-2714	5.5	13
162	Semihydrogenation of Acetylene on Indium Oxide: Proposed Single-Ensemble Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 10895-10900	3.6	13
161	Impact of Pore Connectivity on the Design of Long-Lived Zeolite Catalysts. <i>Angewandte Chemie</i> , 2015 , 127, 1611-1614	3.6	13
160	Hybrid Optical/RF Channel Performance Analysis for Turbo Codes. <i>IEEE Transactions on Communications</i> , 2011 , 59, 1389-1399	6.9	13
159	Effect of NO on the catalytic removal of N2O over FeZSM-5. Friend or foe. <i>Catalysis Communications</i> , 2003 , 4, 333-338	3.2	13
158	Visualising compositional heterogeneity during the scale up of multicomponent zeolite bodies. <i>Materials Horizons</i> , 2017 , 4, 857-861	14.4	12
157	Lanthanum vanadate catalysts for selective and stable methane oxybromination. <i>Journal of Catalysis</i> , 2018 , 363, 69-80	7-3	12
156	Electrochemical Effects at SurfactantPlatinum Nanoparticle Interfaces Boost Catalytic Performance. <i>ChemCatChem</i> , 2017 , 9, 604-609	5.2	12
155	Room Temperature Synthesis and Size Control of HKUST-1. Helvetica Chimica Acta, 2012 , 95, 2278-2286	2	12
154	Assembly of a hierarchical zeolite-silica composite by spray drying. CrystEngComm, 2012, 14, 5985	3.3	12
153	By-product co-feeding reveals insights into the role of zinc on methanol synthesis catalysts. <i>Catalysis Communications</i> , 2012 , 21, 63-67	3.2	12
152	CuCrO2 Delafossite: A Stable Copper Catalyst for Chlorine Production. <i>Angewandte Chemie</i> , 2013 , 125, 9954-9957	3.6	12
151	Activation of Copper Species on Carbon Nitride for Enhanced Activity in the Arylation of Amines. <i>ACS Catalysis</i> , 2020 , 10, 11069-11080	13.1	12
150	Atom-by-Atom Resolution of Structure Hunction Relations over Low-Nuclearity Metal Catalysts. <i>Angewandte Chemie</i> , 2019 , 131, 8816-8821	3.6	11
149	Synthesis-property-performance relationships of amorphous silica-alumina catalysts for the production of methylenedianiline and higher homologues. <i>Journal of Catalysis</i> , 2016 , 344, 757-767	7.3	11

148	Optimal hydrocarbon selection for catalytic N2O reduction over iron-containing ZSM-5 zeolite. <i>Environmental Science & Environmental &</i>	10.3	11
147	Role of intrinsic zeolite properties on mesopore formation by desilication of MFI structures. <i>Studies in Surface Science and Catalysis</i> , 2005 , 156, 401-408	1.8	11
146	Flame Spray Pyrolysis as a Synthesis Platform to Assess Metal Promotion in In 2 O 3 -Catalyzed CO 2 Hydrogenation. <i>Advanced Energy Materials</i> ,2103707	21.8	11
145	Halogen type as a selectivity switch in catalysed alkane oxyhalogenation. <i>Catalysis Science and Technology</i> , 2018 , 8, 2231-2243	5.5	10
144	Impact of Daily StartupBhutdown Conditions on the Production of Solar Methanol over a Commercial CuanoAl2O3 Catalyst. <i>Energy Technology</i> , 2016 , 4, 565-572	3.5	10
143	Understanding the Structure of Cationic Sites in Alkali Metal-Grafted USY Zeolites. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 4954-4960	3.8	10
142	A Single-Input Multiple-Output Optical System for Mobile Communication: Modeling and Validation. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 368-371	2.2	10
141	Determining Bio-Oil Composition via Chemometric Tools Based on Infrared Spectroscopy. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 8710-8719	8.3	10
140	Mechanism of ethylene oxychlorination over ruthenium oxide. <i>Journal of Catalysis</i> , 2017 , 353, 171-180	7.3	10
139	Promotional Effect of Ni in the Selective Gas-Phase Hydrogenation of Chloronitrobenzene over Cu-based Catalysts. <i>ChemCatChem</i> , 2012 , 4, 668-673	5.2	10
138	Selectivity patterns in heterogeneously catalyzed hydrogenation of conjugated ene-yne and diene compounds. <i>Journal of Catalysis</i> , 2011 , 284, 165-175	7.3	10
137	DRIFTS study of the catalytic N2O reduction by SO2 on FeZSM-5. <i>Catalysis Communications</i> , 2010 , 11, 1058-1062	3.2	10
136	Characterization of Iron Species in Ex-Framework FeZSM-5 by Electrochemical Methods. <i>Catalysis Letters</i> , 2002 , 78, 303-312	2.8	10
135	Design of carbon supports for metal-catalyzed acetylene hydrochlorination. <i>Nature Communications</i> , 2021 , 12, 4016	17.4	10
134	Sustainable Synthesis of Bimetallic Single Atom Gold-Based Catalysts with Enhanced Durability in Acetylene Hydrochlorination. <i>Small</i> , 2021 , 17, e2004599	11	10
133	Elucidating the Distribution and Speciation of Boron and Cesium in BCsX Zeolite Catalysts for Styrene Production. <i>ChemPhysChem</i> , 2018 , 19, 437-445	3.2	10
132	Immobilizing and de-immobilizing enzymes on mesoporous silica. <i>RSC Advances</i> , 2015 , 5, 87706-87712	3.7	9
131	Hydrocracking of hexadecane to jet fuel components over hierarchical Ru-modified faujasite zeolite. <i>Fuel</i> , 2020 , 278, 118193	7.1	9

130	Catalyst Distribution Strategies in Fixed-Bed Reactors for Bromine Production. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 9067-9075	3.9	9
129	Platform Chemicals via Zeolite-Catalyzed Fast Pyrolysis of Glucose. <i>ChemCatChem</i> , 2017 , 9, 1579-1582	5.2	9
128	Reevaluation of the structure and fundamental physical properties of dawsonites by DFT studies. <i>Inorganic Chemistry</i> , 2011 , 50, 2590-8	5.1	9
127	Comments on Infrared emission spectroscopic studies of the thermal transformation of Mg-, Ni-and Co-hydrotalcite catalysts[Appl. Catal. A: Gen. 184 (1999) 61🖬 1]. <i>Applied Catalysis A: General</i> , 2000 , 204, 265-267	5.1	9
126	An Activated TiCBiC Composite for Natural Gas Upgrading via Catalytic Oxyhalogenation. <i>ChemCatChem</i> , 2018 , 10, 1282-1290	5.2	9
125	Cascade Deoxygenation Process Integrating Acid and Base Catalysts for the Efficient Production of Second-Generation Biofuels. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18027-18037	8.3	8
124	CO2-Promoted Catalytic Process Forming Higher Alcohols with Tunable Nature at Record Productivity. <i>ChemCatChem</i> , 2020 , 12, 2732-2744	5.2	8
123	Development of InDEbased Catalysts for COEbased Methanol Production. <i>Chimia</i> , 2020 , 74, 257-262	1.3	8
122	Oxychlorination Dehydrochlorination Chemistry on Bifunctional Ceria Catalysts for Intensified Vinyl Chloride Production. <i>Angewandte Chemie</i> , 2016 , 128, 3120-3124	3.6	8
121	Toward Functional Clathrasils: Size- and Composition-Controlled Octadecasil Nanocrystals by Desilication. <i>Angewandte Chemie</i> , 2008 , 120, 8031-8035	3.6	8
120	Hybridization of Fossil- and CO -Based Routes for Ethylene Production using Renewable Energy. <i>ChemSusChem</i> , 2020 , 13, 6370-6380	8.3	8
119	Sustainability Assessment of Thermocatalytic Conversion of CO2 to Transportation Fuels, Methanol, and 1-Propanol. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 10591-10600	8.3	8
118	Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3596-3602	16.4	8
117	Europium Oxybromide Catalysts for Efficient Bromine Looping in Natural Gas Valorization. <i>Angewandte Chemie</i> , 2017 , 129, 9923-9927	3.6	7
116	Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites. <i>ChemPhysChem</i> , 2017 , 18, 470	-4,729	7
115	Impact of feed impurities on catalysts for chlorine recycling. <i>Applied Catalysis B: Environmental</i> , 2015 , 162, 602-609	21.8	7
114	Mechanistic origin of the diverging selectivity patterns in catalyzed ethane and ethene oxychlorination. <i>Journal of Catalysis</i> , 2019 , 377, 233-244	7.3	7
113	Mechanistic Insights into the Ceria-Catalyzed Synthesis of Carbamates as Polyurethane Precursors. <i>ACS Catalysis</i> , 2019 , 9, 7708-7720	13.1	7

112	Olefins from Natural Gas by Oxychlorination. <i>Angewandte Chemie</i> , 2017 , 129, 13858-13862	3.6	7
111	Structure analysis of a BEC-type germanosilicate zeolite including the location of the flexible organic cations in the channels. <i>CrystEngComm</i> , 2015 , 17, 4865-4870	3.3	7
110	Mechanistic analysis of direct N2O decomposition and reduction with H2 or NH3 over RuO2. <i>Applied Catalysis B: Environmental</i> , 2011 , 110, 33-39	21.8	7
109	SO2-promoted catalytic N2O removal over iron zeolites. <i>Chemical Communications</i> , 2008 , 5351-3	5.8	7
108	Transient studies on the effect of oxygen on the high-temperature NO reduction by NH3 over PtRh gauze. <i>Applied Catalysis A: General</i> , 2005 , 289, 97-103	5.1	7
107	Planetary metrics for the absolute environmental sustainability assessment of chemicals <i>Green Chemistry</i> , 2021 , 23, 9881-9893	10	7
106	Atomic Pd-promoted ZnZrO solid solution catalyst for CO2 hydrogenation to methanol. <i>Applied Catalysis B: Environmental</i> , 2022 , 304, 120994	21.8	7
105	Carrier-Induced Modification of Palladium Nanoparticles on Porous Boron Nitride for Alkyne Semi-Hydrogenation. <i>Angewandte Chemie</i> , 2020 , 132, 19807-19812	3.6	7
104	Precursor Nuclearity and Ligand Effects in Atomically-Dispersed Heterogeneous Iron Catalysts for Alkyne Semi-Hydrogenation. <i>ChemCatChem</i> , 2021 , 13, 3247-3256	5.2	7
103	Planetary Boundaries Analysis of Low-Carbon Ammonia Production Routes. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 9740-9749	8.3	7
102	Process modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels. <i>Reaction Chemistry and Engineering</i> , 2021 , 6, 1179-1194	4.9	7
101	Improving power flow in transformers using a BTB converter to balance low voltage feeders 2012,		6
100	Design and Analysis of Bit Selections in HARQ Algorithm for Hybrid FSO/RF Channels 2013,		6
99	Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication <i>ChemInform</i> , 2004 , 35, no		6
98	Effect of the Support in de-NOx HC-SCR Over Transition Metal Catalysts. <i>Reaction Kinetics and Catalysis Letters</i> , 2000 , 70, 199-206		6
97	Nitrogen-Doped Carbons with Hierarchical Porosity via Chemical Blowing Towards Long-Lived Metal-Free Catalysts for Acetylene Hydrochlorination. <i>ChemCatChem</i> , 2020 , 12, 1922-1925	5.2	6
96	Synthesizing High-Volume Chemicals from CO without Direct H Input. <i>ChemSusChem</i> , 2020 , 13, 6066-60	89 3	6
95	Functionalized wood with tunable tribopolarity for efficient triboelectric nanogenerators. <i>Matter</i> , 2021 , 4, 3049-3066	12.7	6

(2020-2014)

94	The Virtue of Defects: Stable Bromine Production by Catalytic Oxidation of Hydrogen Bromide on Titanium Oxide. <i>Angewandte Chemie</i> , 2014 , 126, 8772-8777	3.6	5	
93	Generalized DC voltage regulation strategy for [I] relation cascade H-bridge converter-based STATCOM 2009 ,		5	
92	Reactivity of MgAl hydrotalcites in solid and delaminated forms in ammonium carbonate solutions. <i>Solid State Sciences</i> , 2010 , 12, 1822-1830	3.4	5	
91	Methanol as a Hydrogen Carrier: Kinetic and Thermodynamic Drivers for its CO -Based Synthesis and Reforming over Heterogeneous Catalysts. <i>ChemSusChem</i> , 2020 , 13, 6330-6337	8.3	5	
90	Shedding New Light on Nanostructured Catalysts with Positron Annihilation Spectroscopy. <i>Small Methods</i> , 2018 , 2, 1800268	12.8	5	
89	Nuclearity and Host Effects of Carbon-Supported Platinum Catalysts for Dibromomethane Hydrodebromination. <i>Small</i> , 2021 , 17, e2005234	11	5	
88	Recent Progress in Materials Exploration for Thermocatalytic, Photocatalytic, and Integrated Photothermocatalytic CO 2 -to-Fuel Conversion. <i>Advanced Energy and Sustainability Research</i> , 2022 , 3, 2100169	1.6	5	
87	Halogenbedingte Oberfl©henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen. <i>Angewandte Chemie</i> , 2019 , 131, 5935-5940	3.6	4	
86	Ceria in halogen chemistry. Chinese Journal of Catalysis, 2020, 41, 915-927	11.3	4	
85	Acidity Effects in Positron Annihilation Lifetime Spectroscopy of Zeolites. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 3443-3453	3.8	4	
84	Preserved in a Shell: High-Performance Graphene-Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination. <i>Angewandte Chemie</i> , 2019 , 131, 12425-12432	3.6	4	
83	Hierarchically Structured MnO2-Co/C Nanocomposites: Highly Efficient and Magnetically Recyclable Catalysts for the Aerobic Oxidation of Alcohols. <i>ChemCatChem</i> , 2015 , 7, 2585-2589	5.2	4	
82	From the Lindlar Catalyst to Supported Ligand-Modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuous-Flow Three-Phase Hydrogenation of Acetylenic Compounds. <i>Chemistry - A European Journal</i> , 2014 , 20, 5849-5849	4.8	4	
81	Structural Changes of a U3O8/ZrO2 Catalyst During HCl Oxidation & HAADF-STEM Study. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2014 , 640, 768-773	1.3	4	
80	Dual-bed Catalytic System for the Selective Reduction of NOx with Propene. <i>Chemical Engineering and Technology</i> , 2000 , 23, 721-725	2	4	
79	Toward reliable and accessible ammonia quantification in the electrocatalytic reduction of nitrogen. <i>Chem Catalysis</i> , 2021 ,		4	
78	Structure dependence of Pt surface activated ammonia oxidation. <i>Journal of Physics: Conference Series</i> , 2008 , 117, 012028	0.3	4	
77	Achieving a low-carbon future through the energythemical nexus in China. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 6141-6155	5.8	4	

76	Impact of Heteroatom Speciation on the Activity and Stability of Carbon-Based Catalysts for Propane Dehydrogenation. <i>ChemCatChem</i> , 2021 , 13, 2599-2608	5.2	4
75	Methanol Synthesis by Hydrogenation of Hybrid CO -CO Feeds. <i>ChemSusChem</i> , 2021 , 14, 2914-2923	8.3	4
74	Automated Image Analysis for Single-Atom Detection in Catalytic Materials by Transmission Electron Microscopy <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	4
73	A generalized machine learning framework to predict the space-time yield of methanol from thermocatalytic CO2 hydrogenation. <i>Applied Catalysis B: Environmental</i> , 2022 , 121530	21.8	4
72	Demo/poster abstract: Enabling time-critical applications over next-generation 802.11 networks 2018 ,		3
71	Preparation of highly active phosphated TiO2 catalysts via continuous solgel synthesis in a microreactor. <i>Catalysis Science and Technology</i> , 2019 , 9, 4744-4758	5.5	3
70	Design of hydrothermally-stable dawsonite-based sorbents in technical form for CO2 capture. <i>Energy and Environmental Science</i> , 2014 , 7, 3640-3650	35.4	3
69	Experimental multiuser mobile optical communication using compressive sensing 2014,		3
68	Mechanistic study of the palladium-catalyzed ethyne hydrogenation by the Temporal Analysis of Products technique. <i>Applied Catalysis A: General</i> , 2012 , 439-440, 163-170	5.1	3
67	DC-bus voltage regulation scheme for asymmetric cascade H-bridge converter working as STATCOM and active filter 2010 ,		3
66	Reduction of NO by Propene Over Pt, Pd and Rh-Based ZSM-5 Under Lean-Burn Conditions. <i>Reaction Kinetics and Catalysis Letters</i> , 2000 , 69, 385-392		3
65	Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction. <i>Catalysis Science and Technology</i> , 2022 , 12, 409-417	5.5	3
64	Dual catalyst system for selective vinyl chloride production via ethene oxychlorination. <i>Catalysis Science and Technology</i> , 2020 , 10, 560-575	5.5	3
63	Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate. <i>Angewandte Chemie</i> , 2016 , 128, 15848-15852	3.6	3
62	Upscaling Effects on Alkali Metal-Grafted Ultrastable Y Zeolite Extrudates for Modeled Catalytic Deoxygenation of Bio-oils. <i>ChemCatChem</i> , 2021 , 13, 1951-1965	5.2	3
61	Ethane-Based Catalytic Process for Vinyl Chloride Manufacture. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24089-24095	16.4	3
60	Direct Conversion of Polypropylene into Liquid Hydrocarbons on Carbon-Supported Platinum Catalysts. <i>ChemSusChem</i> , 2021 , 14, 5179-5185	8.3	3
59	Catalysts: Stabilization of Single Metal Atoms on Graphitic Carbon Nitride (Adv. Funct. Mater. 8/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	2

58	Advanced kinetic models through mechanistic understanding: Population balances for methylenedianiline synthesis. <i>Chemical Engineering Science</i> , 2017 , 167, 317-326	4	2
57	Kinetics of ceria-catalysed ethene oxychlorination. <i>Journal of Catalysis</i> , 2019 , 372, 287-298	3	2
56	Substrate substitution effects in the Fries rearrangement of aryl esters over zeolite catalysts. Catalysis Science and Technology, 2020, 10, 4282-4292 5-5	5	2
55	2016,		2
54	Design and Applications of Single-Site Heterogeneous Catalysts. Contributions to Green Chemistry, Clean Technology and Sustainability. Von John Meurig Thomas <i>Angewandte Chemie</i> , 2013 , 125, 10076-10	6 77	2
53	Development of industrial catalysts for sustainable chlorine production. <i>Chimia</i> , 2012 , 66, 694-8	3	2
52	Hierarchical Porous Zeolites by Demetallation 2010 , 31-50		2
51	Reply to Lomments on Assessment of the low-temperature EnviNOx variant for catalytic N2O abatement over steam-activated FeZSM-5: Miguel A.G. Hevia, Javier PEez-Ram ez, Appl. Catal. B: 21 Environ. 77 (2008) 248 254 Applied Catalysis B: Environmental, 2008, 84, 543-544	1.8	2
50	On the role of iron in preparation of mesoporous Fe-MFI zeolites via desilication. <i>Studies in Surface Science and Catalysis</i> , 2006 , 162, 267-274	8	2
49	Generalizing Performance Equations in Heterogeneous Catalysis from Hybrid Data and Statistical Learning. <i>ACS Catalysis</i> , 2022 , 12, 1581-1594	,.1	2
48	Natural Wood-Based Catalytic Membrane Microreactors for Continuous Hydrogen Generation ACS Applied Materials & Date of the A	5	2
47	Aluminum Redistribution in ZSM-5 Zeolite upon Interaction with Gaseous Halogens and Hydrogen Halides and Implications in Catalysis. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 722-733	8	2
46	Catalyst and Process Design for the Continuous Manufacture of Rare Sugar Alcohols by Epimerization Hydrogenation of Aldoses. <i>ChemSusChem</i> , 2016 , 9, 3373-3373	3	2
45	Alkane Functionalization via Catalytic Oxychlorination: Performance as a Function of the Carbon Number. <i>Energy Technology</i> , 2020 , 8, 1900622	5	2
44	Activity differences of rutile and anatase TiO2 polymorphs in catalytic HBr oxidation. <i>Catalysis Today</i> , 2021 , 369, 221-226	3	2
43	Microfabrication Enables Quantification of Interfacial Activity in Thermal Catalysis <i>Small Methods</i> , 2021 , 5, e2001231	2.8	2
42	Hydrotalcite-Derived Mixed Oxides for the Synthesis of a Key Vitamin A Intermediate Reducing Waste. <i>ACS Omega</i> , 2018 , 3, 15293-15301	9	2
41	Controlled Formation of Dimers and Spatially Isolated Atoms in Bimetallic Au-Ru Catalysts via Carbon-Host Functionalization <i>Small</i> , 2022 , e2200224		2

40	Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over CuNiAl Catalysts. <i>ChemCatChem</i> , 2015 , 7, 1503-1503	5.2	1
39	Transformation of titanium carbide into mesoporous titania for catalysed HBr oxidation. <i>Catalysis Science and Technology</i> , 2020 , 10, 4072-4083	5.5	1
38	Towards a Sustainable Manufacture of Hierarchical Zeolites. <i>ChemSusChem</i> , 2014 , 7, 653-653	8.3	1
37	Titelbild: CuCrO2 Delafossite: A Stable Copper Catalyst for Chlorine Production (Angew. Chem. 37/2013). <i>Angewandte Chemie</i> , 2013 , 125, 9763-9763	3.6	1
36	Cascade control applied to asymmetric multilevel converter based-STATCOM 2010,		1
35	2010,		1
34	Balancing the power of transformers in low voltage distribution feeders by using the Back - to - Back power converter 2011 ,		1
33	Catalysis Engineering on Three Levels. <i>International Journal of Chemical Reactor Engineering</i> , 2003 , 1,	1.2	1
32	Redispersion strategy for high-loading carbon-supported metal catalysts with controlled nuclearity <i>Journal of Materials Chemistry A</i> , 2022 , 10, 5953-5961	13	1
31	Carbon-Supported Bimetallic Ruthenium-Iridium Catalysts for Selective and Stable Hydrodebromination of Dibromomethane. <i>ChemCatChem</i> ,	5.2	1
30	Halogen Chemistry on Catalytic Surfaces. <i>Chimia</i> , 2016 , 70, 274-8	1.3	1
29	Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy. <i>Angewandte Chemie</i> , 2021 , 133, 3640-3646	3.6	1
28	Positron Annihilation Spectroscopy: Shedding New Light on Nanostructured Catalysts with Positron Annihilation Spectroscopy (Small Methods 12/2018). <i>Small Methods</i> , 2018 , 2, 1800060	12.8	1
27	Catalyst: A step forward for PVC manufacture from natural gas. <i>CheM</i> , 2022 ,	16.2	1
26	Single-atom heterogeneous catalysts for sustainable organic synthesis. <i>Trends in Chemistry</i> , 2022 , 4, 26	4±247.86	1
25	ZnO-Promoted Inverse ZrO2ftu Catalysts for CO2-Based Methanol Synthesis under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 81-90	8.3	1
24	Synthesis of Florol via Prins cyclization over heterogeneous catalysts. <i>Journal of Catalysis</i> , 2022 , 405, 288-302	7.3	0
23	Enhanced Performance of Zirconium-Doped Ceria Catalysts for the Methoxycarbonylation of Anilines. <i>Chemistry - A European Journal</i> , 2020 , 26, 16129-16137	4.8	O

22	Ethane-Based Catalytic Process for Vinyl Chloride Manufacture. <i>Angewandte Chemie</i> , 2021 , 133, 24291	3.6	О
21	Titelbild: Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand (Angew. Chem. 7/2017). <i>Angewandte Chemie</i> , 2017 , 129, 1701-1701	3.6	
20	Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites. <i>ChemPhysChem</i> , 2017 , 18, 428	-4,228	
19	InnenrEktitelbild: Olefins from Natural Gas by Oxychlorination (Angew. Chem. 44/2017). Angewandte Chemie, 2017 , 129, 14087-14087	3.6	
18	Mechanistic Understanding of Halogen-mediated Catalytic Processes for Selective Natural Gas Functionalization. <i>Chimia</i> , 2019 , 73, 288-293	1.3	
17	Hierarchical Structures: Quantifying the Complex Pore Architecture of Hierarchical Faujasite Zeolites and the Impact on Diffusion (Adv. Funct. Mater. 31/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 5768-5768	15.6	
16	. IEEE Signal Processing Letters, 2016 , 23, 174-178	3.2	
15	Titelbild: Halogenbedingte Oberfl©henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen (Angew. Chem. 18/2019). <i>Angewandte Chemie</i> , 2019 , 131, 5829-5829	3.6	
14	Zeolites: Superior Mass Transfer Properties of Technical Zeolite Bodies with Hierarchical Porosity (Adv. Funct. Mater. 2/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 174-174	15.6	
13	Titelbild: Opposite Face Sensitivity of CeO2 in Hydrogenation and Oxidation Catalysis (Angew. Chem. 45/2014). <i>Angewandte Chemie</i> , 2014 , 126, 12181-12181	3.6	
12	REktitelbild: Impact of Pore Connectivity on the Design of Long-Lived Zeolite Catalysts (Angew. Chem. 5/2015). <i>Angewandte Chemie</i> , 2015 , 127, 1698-1698	3.6	
11	Metal©rganic Frameworks: Scalable Room-Temperature Conversion of Copper(II) Hydroxide into HKUST-1 (Cu3(btc)2) (Adv. Mater. 7/2013). <i>Advanced Materials</i> , 2013 , 25, 1080-1080	24	
10	Nanostructured Oxides in DeNOx Technologies 2006 , 603-632		
9	Highly Active and Stable Pt-USY in the Low-Temperature de-NOx HC-SCR. <i>Reaction Kinetics and Catalysis Letters</i> , 2000 , 71, 33-40		
8	Dual-Bed Catalytic System for Removal of NOx-N2O in Lean-Burn Engine Exhausts 2002 , 229-243		
7	Thermal decomposition of layered Co-Al hydrotalcite An in situ study 2003 , 631-638		
6	Inside Back Cover: Microfabrication Enables Quantification of Interfacial Activity in Thermal Catalysis (Small Methods 5/2021). <i>Small Methods</i> , 2021 , 5, 2170021	12.8	
5	Titelbild: Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation (Angew. Chem. 21/2016). <i>Angewandte Chemie</i> , 2016 , 128, 6215-6215	3.6	

4	InnenrEktitelbild: Selective Production of Carbon Monoxide via Methane Oxychlorination over Vanadyl Pyrophosphate (Angew. Chem. 50/2016). <i>Angewandte Chemie</i> , 2016 , 128, 15909-15909	3.6
3	Titelbild: Design of Single Gold Atoms on Nitrogen-Doped Carbon for Molecular Recognition in Alkyne Semi-Hydrogenation (Angew. Chem. 2/2019). <i>Angewandte Chemie</i> , 2019 , 131, 357-357	3.6
2	Innentitelbild: Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy (Angew. Chem. 7/2021). <i>Angewandte Chemie</i> , 2021 , 133, 3354-3354	3.6
1	Enhanced Base-Free Formic Acid Production from CO2 on Pd/g-C3N4 by Tuning of the Carrier Defects. <i>ChemSusChem</i> , 2018 , 11, 2841-2841	8.3