Marco Binder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5174662/publications.pdf

Version: 2024-02-01

55	5,033	29 h-index	47
papers	citations		g-index
91	91	91	7646
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nature Biotechnology, 2022, 40, 319-324.	17.5	229
2	SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Communications Biology, 2022, 5, 45.	4.4	133
3	The Interferon Response Dampens the Usutu Virus Infection-Associated Increase in Glycolysis. Frontiers in Cellular and Infection Microbiology, 2022, 12, 823181.	3.9	6
4	Cooperative effects of RIG-I-like receptor signaling and IRF1 on DNA damage-induced cell death. Cell Death and Disease, 2022, 13, 364.	6.3	7
5	Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nature Biotechnology, 2021, 39, 705-716.	17.5	129
6	TLR3 Activation by Zika Virus Stimulates Inflammatory Cytokine Production Which Dampens the Antiviral Response Induced by RIG-I-Like Receptors. Journal of Virology, 2021, 95, .	3.4	19
7	MultiEditR: The first tool for the detection and quantification of RNA editing from Sanger sequencing demonstrates comparable fidelity to RNA-seq. Molecular Therapy - Nucleic Acids, 2021, 25, 515-523.	5.1	11
8	Comparative Analysis of Six IRF Family Members in Alveolar Epithelial Cell-Intrinsic Antiviral Responses. Cells, 2021, 10, 2600.	4.1	15
9	NUDT2 initiates viral RNA degradation by removal of 5′-phosphates. Nature Communications, 2021, 12, 6918.	12.8	13
10	Gene Expression Profiling of Different Huh7 Variants Reveals Novel Hepatitis C Virus Host Factors. Viruses, 2020, 12, 36.	3.3	5
11	Identification of Interleukin \hat{l}^2 as an Amplifier of Interferon alpha-induced Antiviral Responses. PLoS Pathogens, 2020, 16, e1008461.	4.7	5
12	A Coupled Mathematical Model of the Intracellular Replication of Dengue Virus and the Host Cell Immune Response to Infection. Frontiers in Microbiology, 2020, 11, 725.	3.5	28
13	Persistent Innate Immune Stimulation Results in IRF3-Mediated but Caspase-Independent Cytostasis. Viruses, 2020, 12, 635.	3.3	9
14	Host factor prioritization for pan-viral genetic perturbation screens using random intercept models and network propagation. PLoS Computational Biology, 2020, 16, e1007587.	3.2	11
15	A dual role for hepatocyte-intrinsic canonical NF-κB signalingÂinÂvirus control. Journal of Hepatology, 2020, 72, 960-975.	3.7	18
16	Mechanistic modeling explains the dsRNA length-dependent activation of the RIG-I mediated immune response. Journal of Theoretical Biology, 2020, 500, 110336.	1.7	5
17	Disentangling molecular mechanisms regulating sensitization of interferon alpha signal transduction. Molecular Systems Biology, 2020, 16, e8955.	7.2	41
18	Title is missing!. , 2020, 16, e1007587.		O

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1007587.		0
20	Title is missing!. , 2020, 16, e1007587.		0
21	Title is missing!. , 2020, 16, e1007587.		0
22	RIPLET, and not TRIM25, is required for endogenous RIGâ€lâ€dependent antiviral responses. Immunology and Cell Biology, 2019, 97, 840-852.	2.3	70
23	Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell, 2019, 177, 1187-1200.e16.	28.9	141
24	Antiviral activity of bone morphogenetic proteins and activins. Nature Microbiology, 2019, 4, 339-351.	13.3	39
25	Tackling the HCV Life Cycle with Mathematical Modeling – Decoding the Enigma. , 2019, 57, .		0
26	Activation of the interferon response by HCV is mediated by MDA5 and potentiated by LGP2. , 2019, 57, .		0
27	HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon. Gastroenterology, 2018, 154, 1791-1804.e22.	1.3	128
28	Secretion of Hepatitis C Virus Replication Intermediates Reduces Activation of Toll-Like Receptor 3 in Hepatocytes. Gastroenterology, 2018, 154, 2237-2251.e16.	1.3	63
29	Phosphorylation of TRIM28 Enhances the Expression of IFN- \hat{l}^2 and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells. Frontiers in Immunology, 2018, 9, 2229.	4.8	64
30	Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening. Molecular Cell, 2017, 65, 403-415.e8.	9.7	40
31	Reovirus intermediate subviral particles constitute a strategy to infect intestinal epithelial cells by exploiting TGF- \hat{l}^2 dependent pro-survival signaling. Cellular Microbiology, 2016, 18, 1831-1845.	2.1	36
32	Type I and type II interferon responses in two human liver cell lines (Huh-7 and HuH6). Genomics Data, 2016, 7, 166-170.	1.3	9
33	Sensing of HIV-1 Infection in Tzm-bl Cells with Reconstituted Expression of STING. Journal of Virology, 2016, 90, 2064-2076.	3.4	29
34	Activation of Type I and III Interferon Response by Mitochondrial and Peroxisomal MAVS and Inhibition by Hepatitis C Virus. PLoS Pathogens, 2015, 11, e1005264.	4.7	125
35	Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A. Journal of Hepatology, 2015, 63, 829-837.	3.7	47
36	DDX60L Is an Interferon-Stimulated Gene Product Restricting Hepatitis C Virus Replication in Cell Culture. Journal of Virology, 2015, 89, 10548-10568.	3.4	50

#	Article	IF	Citations
37	A Coding IRAK2 Protein Variant Compromises Toll-like receptor (TLR) Signaling and Is Associated with Colorectal Cancer Survival. Journal of Biological Chemistry, 2014, 289, 23123-23131.	3.4	18
38	Hepatitis C: A mouse at the end of the tunnel. Cell Research, 2013, 23, 1343-1344.	12.0	0
39	Hepatitis C virus targets the interferonâ€i± JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes. FEBS Letters, 2013, 587, 1571-1578.	2.8	45
40	Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines. Nucleic Acids Research, 2013, 41, e199-e199.	14.5	53
41	Replication Vesicles are Load- and Choke-Points in the Hepatitis C Virus Lifecycle. PLoS Pathogens, 2013, 9, e1003561.	4.7	77
42	Analysis of hepatitis C virus resistance to silibinin <i>in vitro</i> and <i>in vivo</i> points to a novel mechanism involving nonstructural protein 4B. Hepatology, 2013, 57, 953-963.	7.3	44
43	785 INNATE SIGNALING BY HEPATITIS C VIRUS IS RIG-I AND MDA5 DEPENDENT AND MODULATED BY NS5A DOMAIN II. Journal of Hepatology, 2012, 56, S308.	3.7	0
44	Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology, 2012, 56, 2082-2093.	7.3	138
45	Viral immune modulators perturb the human molecular network by common and unique strategies. Nature, 2012, 487, 486-490.	27.8	249
46	Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiology Reviews, 2012, 36, 663-683.	8.6	103
47	Normalizing for individual cell population context in the analysis of high-content cellular screens. BMC Bioinformatics, 2011, 12, 485.	2.6	22
48	Human leukocyte antigen B27 selects for rare escape mutations that significantly impair hepatitis C virus replication and require compensatory mutations. Hepatology, 2011, 54, 1157-1166.	7.3	47
49	RNA helicase retinoic acid-inducible gene I as a sensor of Hantaan virus replication. Journal of General Virology, 2011, 92, 2191-2200.	2.9	38
50	Molecular Mechanism of Signal Perception and Integration by the Innate Immune Sensor Retinoic Acid-inducible Gene-I (RIG-I). Journal of Biological Chemistry, 2011, 286, 27278-27287.	3.4	112
51	Role of Annexin A2 in the Production of Infectious Hepatitis C Virus Particles. Journal of Virology, 2010, 84, 5775-5789.	3.4	114
52	Bacterial RNA is recognized by different sets of immunoreceptors. European Journal of Immunology, 2009, 39, 2537-2547.	2.9	68
53	Identification of Determinants Involved in Initiation of Hepatitis C Virus RNA Synthesis by Using Intergenotypic Replicase Chimeras. Journal of Virology, 2007, 81, 5270-5283.	3.4	92
54	Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy. Hepatology, 2007, 46, 1365-1374.	7.3	100

#	Article	IF	CITATIONS
55	Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005, 437, 1167-1172.	27.8	2,136