Agnieszka Brandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5174371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitivity Analysis and Parameter Optimization for the Fractionative Catalytic Conversion of Lignocellulosic Biomass in the Polyoxometalate–Ionosolv Concept. ACS Sustainable Chemistry and Engineering, 2022, 10, 8474-8483.	6.7	3
2	Towards an environmentally and economically sustainable biorefinery: heavy metal contaminated waste wood as a low-cost feedstock in a low-cost ionic liquid process. Green Chemistry, 2020, 22, 5032-5041.	9.0	24
3	Exploring the Effect of Water Content and Anion on the Pretreatment of Poplar with Three 1-Ethyl-3-methylimidazolium Ionic Liquids. Molecules, 2020, 25, 2318.	3.8	10
4	Characterisation of cellulose pulps isolated from Miscanthus using a low-cost acidic ionic liquid. Cellulose, 2020, 27, 4745-4761.	4.9	39
5	Combining Costâ€Efficient Cellulose and Shortâ€Chain Carboxylic Acid Production: The Polyoxometalate (POM)â€Ionosolv Concept. ChemPlusChem, 2020, 85, 373-386.	2.8	9
6	Fractionation by Sequential Antisolvent Precipitation of Grass, Softwood, and Hardwood Lignins Isolated Using Low-Cost Ionic Liquids and Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 3751-3761.	6.7	34
7	Interplay of Acid–Base Ratio and Recycling on the Pretreatment Performance of the Protic Ionic Liquid Monoethanolammonium Acetate. ACS Sustainable Chemistry and Engineering, 2020, 8, 7952-7961.	6.7	36
8	Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids. Green Chemistry, 2019, 21, 692-703.	9.0	111
9	Pretreatment of South African sugarcane bagasse using a low-cost protic ionic liquid: a comparison of whole, depithed, fibrous and pith bagasse fractions. Biotechnology for Biofuels, 2018, 11, 247.	6.2	64
10	Experimental validation of calculated atomic charges in ionic liquids. Journal of Chemical Physics, 2018, 148, 193817.	3.0	24
11	Rapid pretreatment of <i>Miscanthus</i> using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. Green Chemistry, 2018, 20, 3486-3498.	9.0	100
12	Solvation Behavior of Ionic Liquids and Their Role in the Production of Lignocellulosic Biofuels and Sustainable Chemical Feedstocks. Series on Chemistry, Energy and the Environment, 2018, , 77-134.	0.3	1
13	An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry, 2017, 19, 3078-3102.	9.0	296
14	Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment. Faraday Discussions, 2017, 202, 331-349.	3.2	67
15	Ultra-Low Cost Ionic Liquids for the Delignification of Biomass. ACS Symposium Series, 2017, , 209-223.	0.5	15
16	Conversion technologies: general discussion. Faraday Discussions, 2017, 202, 371-389.	3.2	0
17	Highlights from the Faraday Discussion: Bio-resources: Feeding a Sustainable Chemical Industry, 19–21 June 2017, London, UK. Chemical Communications, 2017, 53, 12848-12856.	4.1	1
18	NEXAFS spectroscopy of ionic liquids: experiments <i>versus</i> calculations. Physical Chemistry Chemical Physics, 2017, 19, 31156-31167.	2.8	16

Agnieszka Brandt

#	Article	IF	CITATIONS
19	Atomic charges of sulfur in ionic liquids: experiments and calculations. Faraday Discussions, 2017, 206, 183-201.	3.2	20
20	Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural Using Ionic Liquids. Inorganics, 2016, 4, 32.	2.7	26
21	Mechanistic insights into lignin depolymerisation in acidic ionic liquids. Green Chemistry, 2016, 18, 5456-5465.	9.0	93
22	Pretreatment of Lignocellulosic Biomass with Low-cost Ionic Liquids. Journal of Visualized Experiments, 2016, , .	0.3	45
23	Lignin oxidation and depolymerisation in ionic liquids. Green Chemistry, 2016, 18, 834-841.	9.0	111
24	The Highly Selective and Near-Quantitative Conversion of Glucose to 5-Hydroxymethylfurfural Using Ionic Liquids. PLoS ONE, 2016, 11, e0163835.	2.5	34
25	Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chemistry, 2015, 17, 5019-5034.	9.0	159
26	Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chemistry, 2015, 17, 1728-1734.	9.0	384
27	Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chemistry, 2014, 16, 1617.	9.0	148
28	Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 2013, 15, 550.	9.0	1,243
29	A step towards the a priori design of ionic liquids. Physical Chemistry Chemical Physics, 2013, 15, 11566.	2.8	62
30	Soaking of pine wood chips with ionic liquids for reduced energy input during grinding. Green Chemistry, 2012, 14, 1079.	9.0	35
31	lonic liquids as media for biomass processing: opportunities and restrictions. Holzforschung, 2011, 65,	1.9	23
32	Understanding the polarity of ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 16831.	2.8	454
33	Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 2011, 13, 2489.	9.0	422
34	Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 2010, 87, 635-646.	3.6	156
35	Synthesis of substituted tetrahydrofurans via intermolecular reactions of γ-chlorocarbanions of 3-substituted 3-chloro-propylphenyl sulfones with aldehydes. Tetrahedron, 2010, 66, 3378-3385.	1.9	9
36	The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chemistry, 2010, 12, 672.	9.0	294

#	Article	IF	CITATIONS
37	Isolation of a new butanol-producing Clostridium strain: High level of hemicellulosic activity and structure of solventogenesis genes of a new Clostridium saccharobutylicum isolate. Systematic and Applied Microbiology, 2009, 32, 449-459.	2.8	43