Tomasz Brzozowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5174368/publications.pdf Version: 2024-02-01

		87723	128067
114	4,443	38	60
papers	citations	h-index	g-index
117	117	117	3958
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Role of prostaglandins in the formation of aspirin-induced gastric ulcers. Gastroenterology, 1981, 80, 4-9.	0.6	203
2	Gastric cytoprotection by epidermal growth factor. Gastroenterology, 1981, 81, 438-443.	0.6	188
3	Inhibition of nitric oxide synthase delays healing of chronic gastric ulcers. European Journal of Pharmacology, 1993, 239, 215-217.	1.7	158
4	Role of locally generated prostaglandins in adaptive gastric cytoprotection. Digestive Diseases and Sciences, 1982, 27, 967-971.	1.1	147
5	Mechanisms by which Stress Affects the Experimental and Clinical Inflammatory Bowel Disease (IBD): Role of Brain-Gut Axis. Current Neuropharmacology, 2016, 14, 892-900.	1.4	132
6	Role of epidermal growth factor, prostaglandin, and sulfhydryls in stress-induced gastric lesions. Gastroenterology, 1990, 99, 1607-1615.	0.6	125
7	Classic NSAID and selective cyclooxygenase (COX)-1 and COX-2 inhibitors in healing of chronic gastric ulcers. Microscopy Research and Technique, 2001, 53, 343-353.	1.2	121
8	The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediators of Inflammation, 2017, 2017, 1-9.	1.4	116
9	Gaseous Mediators Nitric Oxide and Hydrogen Sulfide in the Mechanism of Gastrointestinal Integrity, Protection and Ulcer Healing. Molecules, 2015, 20, 9099-9123.	1.7	89
10	Role of prostaglandins generated by cyclooxygenase-1 and cyclooxygenase-2 in healing of ischemia–reperfusion-induced gastric lesions. European Journal of Pharmacology, 1999, 385, 47-61.	1.7	83
11	Epidermal growth factor and transforming growth factor-??: role in protection and healing of gastric mucosal lesions. European Journal of Gastroenterology and Hepatology, 1995, 7, 933-938.	0.8	77
12	Role of gastric acid secretion in progression of acute gastric erosions induced by ischemia–reperfusion into gastric ulcers. European Journal of Pharmacology, 2000, 398, 147-158.	1.7	77
13	Ghrelin-induced gastroprotection against ischemia–reperfusion injury involves an activation of sensory afferent nerves and hyperemia mediated by nitric oxide. European Journal of Pharmacology, 2006, 536, 171-181.	1.7	73
14	Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence. Pharmacological Reports, 2016, 68, 827-836.	1.5	70
15	Role of Obesity, Mesenteric Adipose Tissue, and Adipokines in Inflammatory Bowel Diseases. Biomolecules, 2019, 9, 780.	1.8	70
16	The Role of Physical Exercise in Inflammatory Bowel Disease. BioMed Research International, 2014, 2014, 2014, 1-14.	0.9	65
17	Role ofl-arginine, a substrate for nitric oxide-synthase, in gastroprotection and ulcer healing. Journal of Gastroenterology, 1997, 32, 442-452.	2.3	63
18	Leptin in gastroprotection induced by cholecystokinin or by a meal. Role of vagal and sensory nerves and nitric oxide. European Journal of Pharmacology, 1999, 374, 263-276.	1.7	63

#	Article	IF	CITATIONS
19	Prostaglandin/Cyclooxygenase Pathway in Ghrelin-Induced Gastroprotection against Ischemia-Reperfusion Injury. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 477-487.	1.3	63
20	Role of leptin in ulcer healing. European Journal of Pharmacology, 2001, 414, 87-97.	1.7	61
21	Therapeutic Potential of 1-Methylnicotinamide against Acute Gastric Lesions Induced by Stress: Role of Endogenous Prostacyclin and Sensory Nerves. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 105-116.	1.3	60
22	Probiotics in the Mechanism of Protection Against Gut Inflammation and Therapy of Gastrointestinal Disorders. Current Pharmaceutical Design, 2014, 20, 1149-1155.	0.9	56
23	Role of Capsaicin-Sensitive Sensory Nerves in Gastroprotection against Acid-Independent and Acid-Dependent Ulcerogens. Digestion, 1996, 57, 424-432.	1.2	54
24	Grapefruit-seed extract attenuates ethanol-and stress-induced gastric lesions <i>via</i> activation of prostaglandin, nitric oxide and sensory nerve pathways. World Journal of Gastroenterology, 2005, 11, 6450.	1.4	54
25	Cytoprotective and Ulcer Healing Properties of Prostaglandin E ₂ , Colloidal Bismuth and Sucralfate in Rats. Digestion, 1987, 38, 103-113.	1.2	52
26	lschemic preconditioning, the most effective gastroprotective intervention: involvement of prostaglandins, nitric oxide, adenosine and sensory nerves. European Journal of Pharmacology, 2001, 427, 263-276.	1.7	52
27	Effect of Local Application of Growth Factors on Gastric Ulcer Healing and Mucosal Expression of Cyclooxygenase-1 and -2. Digestion, 2001, 64, 15-29.	1.2	51
28	Role of prostaglandins, nitric oxide, sensory nerves and gastrin in acceleration of ulcer healing by melatonin and its precursor, L-tryptophan. Journal of Pineal Research, 2002, 32, 149-162.	3.4	51
29	lschemic preconditioning of remote organs attenuates gastric ischemia–reperfusion injury through involvement of prostaglandins and sensory nerves. European Journal of Pharmacology, 2004, 499, 201-213.	1.7	49
30	Expression of cyclooxygenase (COX)-1 and COX-2 in adaptive cytoprotection induced by mild stress. Journal of Physiology (Paris), 2000, 94, 83-91.	2.1	48
31	Interaction between endogenous carbon monoxide and hydrogen sulfide in the mechanism of gastroprotection against acute aspirin-induced gastric damage. Pharmacological Research, 2016, 114, 235-250.	3.1	48
32	Water Extracts of <i>Helicobacter pylori</i> Delay Healing of Chronic Gastric Ulcers in Rats: Role of Cytokines and Gastrin-Somatostatin Link. Digestion, 1999, 60, 22-33.	1.2	46
33	Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor-gamma, accelerates gastric ulcer healing in rat. European Journal of Pharmacology, 2003, 472, 213-220.	1.7	46
34	Curcumin: A Potent Protectant against Esophageal and Gastric Disorders. International Journal of Molecular Sciences, 2019, 20, 1477.	1.8	46
35	Carbon Monoxide (CO) Released from Tricarbonyldichlororuthenium (II) Dimer (CORM-2) in Gastroprotection against Experimental Ethanol-Induced Gastric Damage. PLoS ONE, 2015, 10, e0140493. 	1.1	45
36	Endogenous Prostaglandins and Afferent Sensory Nerves in Gastroprotective Effect of Hydrogen Sulfide against Stress-Induced Gastric Lesions. PLoS ONE, 2015, 10, e0118972.	1.1	45

Tomasz Brzozowski

#	Article	IF	CITATIONS
37	Role of endogenous gastrin in gastroprotection. European Journal of Pharmacology, 1995, 278, 203-212.	1.7	43
38	Effect of Probiotics and Triple Eradication Therapy on the Cyclooxygenase (COX)-2 Expression, Apoptosis, and Functional Gastric Mucosal Impairment in Helicobacter pylori-Infected Mongolian Gerbils. Helicobacter, 2006, 11, 10-20.	1.6	42
39	Helicobacter pylori promotes apoptosis, activates cyclooxygenase (COX)-2 and inhibits heat shock protein HSP70 in gastric cancer epithelial cells. Inflammation Research, 2012, 61, 955-966.	1.6	42
40	Cross-talk between hydrogen sulfide and carbon monoxide in the mechanism of experimental gastric ulcers healing, regulation of gastric blood flow and accompanying inflammation. Biochemical Pharmacology, 2018, 149, 131-142.	2.0	42
41	Central Leptin and Cholecystokinin in Gastroprotection against Ethanol-Induced Damage. Digestion, 2000, 62, 126-142.	1.2	41
42	Carbon monoxide released from its pharmacological donor, tricarbonyldichlororuthenium (II) dimer, accelerates the healing of preâ€existing gastric ulcers. British Journal of Pharmacology, 2017, 174, 3654-3668.	2.7	41
43	Moderate Exercise Training Attenuates the Severity of Experimental Rodent Colitis: The Importance of Crosstalk between Adipose Tissue and Skeletal Muscles. Mediators of Inflammation, 2015, 2015, 1-12.	1.4	40
44	Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers. Nutrients, 2017, 9, 410.	1.7	38
45	Oxidative gastric mucosal damage induced by ischemia/reperfusion and the mechanisms of its prevention by carbon monoxide-releasing tricarbonyldichlororuthenium (II) dimer. Free Radical Biology and Medicine, 2019, 145, 198-208.	1.3	38
46	Role of <i>Helicobacter pylori</i> infection in cancerâ€associated fibroblastâ€induced epithelialâ€mesenchymal transition in vitro. Helicobacter, 2018, 23, e12538.	1.6	37
47	Mechanisms of Esophageal Protection, Gastroprotection and Ulcer Healing by Melatonin. Implications for the Therapeutic use of Melatonin in Gastroesophageal Reflux Disease (GERD) and Peptic Ulcer Disease. Current Pharmaceutical Design, 2014, 20, 4807-4815.	0.9	36
48	Acceleration of ulcer healing by cholecystokinin (CCK): role of CCK-A receptors, somatostatin, nitric oxide and sensory nerves. Regulatory Peptides, 1999, 82, 19-33.	1.9	35
49	Importance of the pineal gland, endogenous prostaglandins and sensory nerves in the gastroprotective actions of central and peripheral melatonin against stress-induced damage. Journal of Pineal Research, 2005, 39, 375-385.	3.4	35
50	Organic carbon monoxide prodrug, BW-CO-111, in protection against chemically-induced gastric mucosal damage. Acta Pharmaceutica Sinica B, 2021, 11, 456-475.	5.7	35
51	The Protective Role of Carbon Monoxide (CO) Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO). International Journal of Molecular Sciences, 2016, 17, 442.	1.8	34
52	Hydrogen Sulfide and Carbon Monoxide Protect Gastric Mucosa Compromised by Mild Stress Against Alendronate Injury. Digestive Diseases and Sciences, 2016, 61, 3176-3189.	1.1	33
53	Mechanisms of curcumin-induced gastroprotection against ethanol-induced gastric mucosal lesions. Journal of Gastroenterology, 2018, 53, 618-630.	2.3	32
54	Gastric protection by meciadanol. Digestive Diseases and Sciences, 1986, 31, 847-852.	1.1	31

#	Article	IF	CITATIONS
55	Bacterial Lipopolysaccharide Protects Gastric Mucosa against Acute Injury in Rats by Activation of Genes for Cyclooxygenases and Endogenous Prostaglandins. Digestion, 1998, 59, 284-297.	1.2	31
56	Gastroprotective action of orexin-A against stress-induced gastric damage is mediated by endogenous prostaglandins, sensory afferent neuropeptides and nitric oxide. Regulatory Peptides, 2008, 148, 6-20.	1.9	31
57	Role of central and peripheral ghrelin in the mechanism of gastric mucosal defence. Inflammopharmacology, 2005, 13, 45-62.	1.9	30
58	Emerging role of carbon monoxide in regulation of cellular pathways and in the maintenance of gastric mucosal integrity. Pharmacological Research, 2018, 129, 56-64.	3.1	30
59	Exogenous and endogenous cholecystokinin protects gastric mucosa against the damage caused by ethanol in rats. European Journal of Pharmacology, 1995, 273, 57-62.	1.7	28
60	Exogenous and Endogenous Hydrogen Sulfide Protects Gastric Mucosa against the Formation and Time-Dependent Development of Ischemia/Reperfusion-Induced Acute Lesions Progressing into Deeper Ulcerations. Molecules, 2017, 22, 295.	1.7	28
61			

Tomasz Brzozowski

#	Article	IF	CITATIONS
73	Nitric oxide-releasing aspirin but not conventional aspirin improves healing of experimental colitis. World Journal of Gastroenterology, 2011, 17, 4076.	1.4	20
74	The Impact of Asymmetric Dimethylarginine (ADAMA), the Endogenous Nitric Oxide (NO) Synthase Inhibitor, to the Pathogenesis of Gastric Mucosal Damage. Current Pharmaceutical Design, 2012, 19, 90-97.	0.9	20
75	Day/night differences in stress-induced gastric lesions in rats with an intact pineal gland or after pinealectomy. Journal of Pineal Research, 2008, 44, 408-415.	3.4	19
76	Exploiting Significance of Physical Exercise in Prevention of Gastrointestinal Disorders. Current Pharmaceutical Design, 2018, 24, 1916-1925.	0.9	18
77	Melatonin in Prevention of the Sequence from Reflux Esophagitis to Barrett's Esophagus and Esophageal Adenocarcinoma: Experimental and Clinical Perspectives. International Journal of Molecular Sciences, 2018, 19, 2033.	1.8	18
78	<i>Helicobacter pylori</i> â€activated gastric fibroblasts induce epithelialâ€mesenchymal transition of gastric epithelial cells in vitro in a TGFâ€Î²â€dependent manner. Helicobacter, 2019, 24, e12653.	1.6	18
79	Effect of Forced Physical Activity on the Severity of Experimental Colitis in Normal Weight and Obese Mice. Involvement of Oxidative Stress and Proinflammatory Biomarkers. Nutrients, 2019, 11, 1127.	1.7	18
80	Evidence for Cytoprotective Effect of Carbon Monoxide Donor in the Development of Acute Esophagitis Leading to Acute Esophageal Epithelium Lesions. Cells, 2020, 9, 1203.	1.8	17
81	Reduced NGF in Gastric Endothelial Cells Is One of the Main Causes of Impaired Angiogenesis in Aging Gastric Mucosa. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 199-213.	2.3	16
82	Gaseous Mediators as a Key Molecular Targets for the Development of Gastrointestinal-Safe Anti-Inflammatory Pharmacology. Frontiers in Pharmacology, 2021, 12, 657457.	1.6	16
83	Esophagoprotection mediated by exogenous and endogenous melatonin in an experimental model of reflux esophagitis. Journal of Pineal Research, 2013, 55, 46-57.	3.4	15
84	Enhanced Resistance of Gastric Mucosa to Damaging Agents in the Rat Stomach Adapted to <i>Helicobacter pylori</i> Lipopolysaccharide. Digestion, 2003, 67, 195-208.	1.2	14
85	Effects of exercise of different intensity on gut peptides, energy intake and appetite in young males. Annals of Agricultural and Environmental Medicine, 2013, 20, 787-93.	0.5	14
86	Editorial (Thematic Issues: Basic and Clinical Aspects of Melatonin in the Gastrointestinal Tract. New) Tj ETQq0) 0 г <u>е</u> ВТ /С	Dverlock 10 Tf
87	Nerve growth factor is critical requirement for in vitro angiogenesis in gastric endothelial cells. American Journal of Physiology - Renal Physiology, 2016, 311, G981-G987.	1.6	13
88	Hydrogen Sulphide Production in Healthy and Ulcerated Gastric Mucosa of Rats. Molecules, 2017, 22, 530.	1.7	13
89	Recent Advances in the Gastric Mucosal Protection Against Stress-induced Gastric Lesions. Importance of Renin-angiotensin Vasoactive Metabolites, Gaseous Mediators and Appetite Peptides. Current Pharmaceutical Design, 2017, 23, 3910-3922.	0.9	13
	Neutrophil-related and serum biomarkers in granulomatosis with polyangiitis support extracellular		

90Neurophiliperated and servin biomarkers in grandiomatosis with polyanging support extracentiar0.41390traps mechanism of the disease. Clinical and Experimental Rheumatology, 2016, 34, S98-104.0.413

#	Article	IF	CITATIONS
91	Long-Term Helicobacter pylori Infection Switches Gastric Epithelium Reprogramming towards Cancer Stem Cell-Related Differentiation Program in Hp-Activated Gastric Fibroblast-TGFβ Dependent Manner. Microorganisms, 2020, 8, 1519.	1.6	12
92	Role of renin–angiotensin system and metabolites of angiotensin in the mechanism of gastric mucosal protection. Current Opinion in Pharmacology, 2014, 19, 90-98.	1.7	10
93	Effect of Acute Sprint Exercise on Myokines and Food Intake Hormones in Young Healthy Men. International Journal of Molecular Sciences, 2020, 21, 8848.	1.8	10
94	Inhibitory effect of selenomethionine on carcinogenesis in the model of human colorectal cancer in vitro and its link to the Wnt/β-catenin pathway Acta Biochimica Polonica, 2018, 65, 359-366.	0.3	10
95	Pathologic basis of gastric mucosal adaptation to topical injury. Journal of Gastroenterology, 1995, 30, 416-427.	2.3	9
96	Intestinal parameters of oxidative imbalance in celiac adults with extraintestinal manifestations. World Journal of Gastroenterology, 2017, 23, 7849-7862.	1.4	9
97	Intestinal Alkaline Phosphatase Combined with Voluntary Physical Activity Alleviates Experimental Colitis in Obese Mice. Involvement of Oxidative Stress, Myokines, Adipokines and Proinflammatory Biomarkers. Antioxidants, 2021, 10, 240.	2.2	8
98	Novel Hydrogen Sulfide (H2S)-Releasing BW-HS-101 and Its Non-H2S Releasing Derivative in Modulation of Microscopic and Molecular Parameters of Gastric Mucosal Barrier. International Journal of Molecular Sciences, 2021, 22, 5211.	1.8	8
99	Nitroimidazole derivatives of polypyridyl ruthenium complexes: Towards understanding their anticancer activity and mode of action. European Journal of Pharmaceutical Sciences, 2017, 101, 43-55.	1.9	7
100	Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Current Pharmaceutical Design, 2020, 26, 2936-2950.	0.9	7
101	The Combination of Intestinal Alkaline Phosphatase Treatment with Moderate Physical Activity Alleviates the Severity of Experimental Colitis in Obese Mice via Modulation of Gut Microbiota, Attenuation of Proinflammatory Cytokines, Oxidative Stress Biomarkers and DNA Oxidative Damage in Colonic Mucosa, International Journal of Molecular Sciences, 2022, 23, 2964.	1.8	7
102	Involvement of Capsaicin-Sensitive Afferent Nerves and Cholecystokinin 2/Gastrin Receptors in Gastroprotection and Adaptation of Gastric Mucosa toHelicobacter pylori-Lipopolysaccharide. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 116-125.	1.3	6
103	Molecular Profile of Barrett's Esophagus and Gastroesophageal Reflux Disease in the Development of Translational Physiological and Pharmacological Studies. International Journal of Molecular Sciences, 2020, 21, 6436.	1.8	6
104	Impact of Vagotomy on Postoperative Weight Loss, Alimentary Intake, and Enterohormone Secretion After Bariatric Surgery in Experimental Translational Models. Obesity Surgery, 2022, 32, 1586-1600.	1.1	4
105	Role of Obesity, Physical Exercise, Adipose Tissue-Skeletal Muscle Crosstalk and Molecular Advances in Barrett's Esophagus and Esophageal Adenocarcinoma. International Journal of Molecular Sciences, 2022, 23, 3942.	1.8	4
106	Nonsteroidal antiâ€inflammatory drugâ€induced experimental gastropathy: Is gastric acid the major trigger?. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 651-653.	0.9	3
107	Gastroprotective Activity of Grapefruit (Citrus paridisi) Seed Extract Against Acute Gastric Lesions. , 2011, , 553-560.		3
108	Editorial [Hot Topic: Novel Physiological and Pharmacological Avenues in the Mechanism of Gastrointestinal Integrity, Protection and Ulcer Healing (Guest Editors: Thomas Brzozowski)]. Current Medicinal Chemistry, 2012, 19, 2-3.	1.2	3

#	Article	IF	CITATIONS
109	Interaction of epidermal growth factor with COX-2 products and peroxisome proliferator-activated receptor-γ system in experimental rat Barrett's esophagus. American Journal of Physiology - Renal Physiology, 2020, 318, G375-G389.	1.6	3
110	Physiological and Pharmacological Mechanisms in Gastrointestinal Protection, Ulcer Healing and Mucosal Repair - An Update. Current Pharmaceutical Design, 2020, 26, 2933-2935.	0.9	2
111	Mouse model of gastric infection with cytotoxin-expressing strain of Helicobacter pylori in studying of pathogenesis of chronic gastric ulcer. Journal of Gastroenterology and Hepatology (Australia), 1998, 13, S178-S184.	1.4	1
112	Mouse model of gastric infection with cytotoxinâ€expressing strain of <i>Helicobacter pylori</i> in studying of pathogenesis of chronic gastric ulcer. Journal of Gastroenterology and Hepatology (Australia), 1998, 13, S178-S184.	1.4	0
113	Nesfatin-1: The Novel Appetite Peptide with Therapeutic Efficacy to Prevent Acute Hemorrhagic Gastric Lesions and Accelerate Gastric Ulcer Healing. , 2017, , 33-56.		0
114	Time-extended exposure of gastric epithelial cells to secretome of -activated fibroblasts induces reprogramming of gastric epithelium towards pre-cancerogenic and pro-invasive phenotype American Journal of Cancer Research, 2022, 12, 1337-1371.	1.4	0