Martin Asplund

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5174054/martin-asplund-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 186
 20,598
 65
 142

 papers
 citations
 h-index
 g-index

 195
 23,166
 5.8
 6.96

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
186	Spectroscopy and Photometry of the Least Massive Type II Globular Clusters: NGC 1261 and NGC 6934*. <i>Astrophysical Journal</i> , 2021 , 923, 22	4.7	3
185	3D NLTE spectral line formation of lithium in late-type stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 500, 2159-2176	4.3	15
184	Exploring the Galaxy® halo and very metal-weak thick disc with SkyMapper and Gaia DR2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 2539-2561	4.3	15
183	The GALAH Survey: using galactic archaeology to refine our knowledge of TESS target stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 4968-4989	4.3	5
182	The GALAH+ survey: Third data release. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 150-201	4.3	70
181	The GALAH Survey: No Chemical Evidence of an Extragalactic Origin for the Nyx Stream. <i>Astrophysical Journal Letters</i> , 2021 , 912, L30	7.9	2
180	Fundamental relations for the velocity dispersion of stars in the Milky Way. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 1761-1776	4.3	12
179	The GALAH survey: Chemical homogeneity of the Orion complex. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 4232-4250	4.3	3
178	The GALAH survey: accreted stars also inhabit the Spite plateau. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 43-54	4.3	4
177	High-resolution spectroscopic follow-up of the most metal-poor candidates from SkyMapper DR1.1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 4102-4119	4.3	5
176	Atomic data for the Gaia-ESO Survey. Astronomy and Astrophysics, 2021 , 645, A106	5.1	21
175	The relationship between photometric and spectroscopic oscillation amplitudes from 3D stellar atmosphere simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 13-27	4.3	1
174	r-Process elements from magnetorotational hypernovae. <i>Nature</i> , 2021 , 595, 223-226	50.4	13
173	The GALAH survey: effective temperature calibration from the InfraRed Flux Method in the Gaia system. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 2684-2696	4.3	10
172	The chemical make-up of the Sun: A 2020 vision. Astronomy and Astrophysics, 2021, 653, A141	5.1	36
171	The COMBS Survey - II. Distinguishing the metal-poor bulge from the halo interlopers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 5981-5996	4.3	7
170	Explosive nucleosynthesis of a metal-deficient star as the source of a distinct odd-even effect in the solar twin HIP 11915. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2021 , 502, L104-L109	4.3	4

(2019-2020)

169	The GALAH survey: a new constraint on cosmological lithium and Galactic lithium evolution from warm dwarf stars. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2020 , 497, L30-L34	4.3	13	
168	The GALAH survey: chemodynamics of the solar neighbourhood. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 2952-2964	4.3	28	
167	Detailed chemical compositions of planet-hosting stars II. Exploration of possible planet signatures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 3961-3973	4.3	10	
166	The 3D non-LTE solar nitrogen abundance from atomic lines. <i>Astronomy and Astrophysics</i> , 2020 , 636, A120	5.1	7	
165	The GALAH Survey: non-LTE departure coefficients for large spectroscopic surveys. <i>Astronomy and Astrophysics</i> , 2020 , 642, A62	5.1	25	
164	The GALAH survey: temporal chemical enrichment of the galactic disc. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 2043-2056	4.3	15	
163	K2-HERMES II. Planet-candidate properties from K2 Campaigns 1-13. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 851-863	4.3	5	
162	The GALAH survey: multiple stars and our Galaxy. Astronomy and Astrophysics, 2020, 638, A145	5.1	9	
161	Convective excitation and damping of solar-like oscillations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 4904-4923	4.3	2	
160	The GALAH survey and Gaia DR2: Linking ridges, arches, and vertical waves in the kinematics of the Milky Way. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 4962-4979	4.3	35	
159	HERBS II: Detailed chemical compositions of Galactic bulge stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 5349-5361	4.3	5	
158	The GALAH survey: unresolved triple Sun-like stars discovered by the Gaia mission. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 2474-2490	4.3	3	
157	HERBS I: Metallicity and alpha enhancement along the Galactic bulge minor axis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 3586-3603	4.3	9	
156	Keck HIRES spectroscopy of SkyMapper commissioning survey candidate extremely metal-poor stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 5153-5167	4.3	9	
155	Constraining the evolution of stellar rotation using solar twins. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2019 , 485, L68-L72	4.3	21	
154	The Lilge correlation: the Sun is unusually Li deficient for its age. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 4052-4059	4.3	27	
153	The GALAH survey and Gaia DR2: dissecting the stellar disc phase space by age, action, chemistry, and location. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1167-1191	4.3	93	
152	The Amplitude of Solar p-mode Oscillations from Three-dimensional Convection Simulations. <i>Astrophysical Journal</i> , 2019 , 880, 13	4.7	10	

151	The COMBS survey II. Chemical origins of metal-poor stars in the Galactic bulge. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 2283-2300	4.3	12
150	The lowest detected stellar Fe abundance: the halo star SMSS J160540.18🛮 44323.1. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2019 , 488, L109-L113	4.3	30
149	The SkyMapper DR1.1 search for extremely metal-poor stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 5900-5918	4.3	28
148	3D non-LTE line formation of neutral carbon in the Sun. <i>Astronomy and Astrophysics</i> , 2019 , 624, A111	5.1	24
147	The GALAH survey: An abundance, age, and kinematic inventory of the solar neighbourhood made with TGAS. <i>Astronomy and Astrophysics</i> , 2019 , 624, A19	5.1	61
146	Chemical (in)homogeneity and atomic diffusion in the open cluster M 67. <i>Astronomy and Astrophysics</i> , 2019 , 627, A117	5.1	26
145	The K2-HERMES Survey: age and metallicity of the thick disc. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5335-5352	4.3	40
144	The GALAH survey: co-orbiting stars and chemical tagging. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 5302-5315	4.3	12
143	The GALAH survey: a catalogue of carbon-enhanced stars and CEMP candidates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3196-3212	4.3	5
142	The GALAH survey: velocity fluctuations in the Milky Way using Red Clump giants. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 4215-4232	4.3	3
141	Thorium in solar twins: implications for habitability in rocky planets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 1690-1700	4.3	13
140	The K2-HERMES Survey. I. Planet-candidate Properties from K2 Campaigns 1B. <i>Astronomical Journal</i> , 2018 , 155, 84	4.9	33
139	The GALAH survey: properties of the Galactic disc(s) in the solar neighbourhood. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 5216-5232	4.3	29
138	Stellar ages and masses in the solar neighbourhood: Bayesian analysis using spectroscopy and Gaia DR1 parallaxes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 2966-2975	4.3	13
137	Accurate effective temperatures of the metal-poor benchmark stars HD 140283, HD 122563, and HD 103095 from CHARA interferometry. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2018 , 475, L81-L85	4.3	29
136	The GALAH survey: stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere, and metallicity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 228-254	4.3	24
135	Detailed chemical compositions of the wide binary HD 80606/80607: revised stellar properties and constraints on planet formation. <i>Astronomy and Astrophysics</i> , 2018 , 614, A138	5.1	16
134	Metallicity Variations in the Type II Globular Cluster NGC 6934. <i>Astrophysical Journal</i> , 2018 , 859, 81	4.7	28

(2017-2018)

133	The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 3369-3392	4.3	18
132	Measuring Oxygen Abundances from Stellar Spectra without Oxygen Lines. <i>Astrophysical Journal</i> , 2018 , 860, 159	4.7	10
131	The Solar Twin Planet Search. Astronomy and Astrophysics, 2018, 619, A73	5.1	37
130	Effective temperature determinations of late-type stars based on 3D non-LTE Balmer line formation. <i>Astronomy and Astrophysics</i> , 2018 , 615, A139	5.1	36
129	The GALAH survey: verifying abundance trends in the open cluster M67 using non-LTE modelling. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 2666-2684	4.3	32
128	The Chemical Homogeneity of Sun-like Stars in the Solar Neighborhood. <i>Astrophysical Journal</i> , 2018 , 865, 68	4.7	83
127	Inelastic O+H collisions and the O I 777 nm solar centre-to-limb variation. <i>Astronomy and Astrophysics</i> , 2018 , 616, A89	5.1	33
126	The GALAH Survey: second data release. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 4513-4552	4.3	193
125	The GALAH survey: accurate radial velocities and library of observed stellar template spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 645-654	4.3	21
124	The Stagger-grid: Synthetic stellar spectra and broad-band photometry. <i>Proceedings of the International Astronomical Union</i> , 2018 , 14, 463-464	0.1	
123	The GALAH survey: chemical tagging of star clusters and new members in the Pleiades. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 4612-4633	4.3	28
122	The TESSHERMES survey data release 1: high-resolution spectroscopy of the TESS southern continuous viewing zone. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 2004-2019	4.3	71
121	The solar silicon abundance based on 3D non-LTE calculations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 264-273	4.3	44
120	Kepler-11 is a Solar Twin: Revising the Masses and Radii of Benchmark Planets via Precise Stellar Characterization. <i>Astrophysical Journal</i> , 2017 , 839, 94	4.7	33
119	The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging. <i>Astrophysical Journal</i> , 2017 , 840, 99	4.7	105
118	Sun-like stars unlike the Sun: Clues for chemical anomaliesof cool stars. <i>Astronomische Nachrichten</i> , 2017 , 338, 442-452	0.7	8
117	The asteroseismic surface effect from a grid of 3D convection simulations II. Frequency shifts from convective expansion of stellar atmospheres. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2017 , 466, L43-L47	4.3	31
116	The GALAH survey: observational overview andGaiaDR1 companion. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3203-3219	4.3	123

115	Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. Astronomy and Astrophysics, 2017 , 605, A89	5.1	98
114	The Solar Twin Planet Search. <i>Astronomy and Astrophysics</i> , 2017 , 597, A34	5.1	30
113	The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information. <i>Astrophysical Journal, Supplement Series</i> , 2017 , 228, 24	8	34
112	Spectroscopy and Photometry of Multiple Populations along the Asymptotic Giant Branch of NGC 2808 and NGC 6121 (M4). <i>Astrophysical Journal</i> , 2017 , 843, 66	4.7	32
111	Non-LTE line formation of Fe in late-type stars IIV. Modelling of the solar centre-to-limb variation in 3D. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 4311-4322	4.3	45
110	The GALAH survey: the data reduction pipeline. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 1259-1281	4.3	47
109	The temporal evolution of neutron-capture elements in the Galactic discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 ,	4.3	38
108	Spectroscopic binaries in the Solar Twin Planet Search program: from substellarhass to M dwarf companions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 3425-3436	4.3	9
107	Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up. <i>Astrophysical Journal</i> , 2017 , 836, 15	4.7	8
106	3D NLTE analysis of the most iron-deficient star, SMSS0313-6708. <i>Astronomy and Astrophysics</i> , 2017 , 597, A6	5.1	58
105	First high-precision differential abundance analysis of extremely metal-poor stars. <i>Astronomy and Astrophysics</i> , 2016 , 586, A67	5.1	14
104	The chemical compositions of solar twins in the open cluster M67. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 696-704	4.3	48
103	The EMBLA survey Imetal-poor stars in the Galactic bulge. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 884-901	4.3	53
102	Non-LTE oxygen line formation in 3D hydrodynamic model stellar atmospheres. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 3735-3751	4.3	75
101	The Solar Twin Planet Search. Astronomy and Astrophysics, 2016, 590, A32	5.1	68
100	Non-LTE line formation of Fe in late-type stars III. 3D non-LTE analysis of metal-poor stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 1518-1533	4.3	90
99	Red supergiant stars in NGC 4449, NGC 5055, and NGC 5457. <i>Proceedings of the International Astronomical Union</i> , 2016 , 12, 392-392	0.1	
98	Nucleosynthetic history of elements in the Galactic disk. <i>Astronomy and Astrophysics</i> , 2016 , 593, A125	5.1	54

97	The Solar Twin Planet Search. Astronomy and Astrophysics, 2016, 592, A156	5.1	30
96	Atomic diffusion and mixing in old stars. <i>Astronomy and Astrophysics</i> , 2016 , 589, A61	5.1	30
95	The detailed chemical composition of the terrestrial planet host Kepler-10. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 2636-2646	4.3	14
94	The Hyades open cluster is chemically inhomogeneous. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 3934-3948	4.3	64
93	Implications of solar wind measurements for solar models and composition. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2-9	4.3	20
92	NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3. Astronomical Journal, 2016 , 152, 41	4.9	154
91	AN ELEMENTAL ASSAY OF VERY, EXTREMELY, AND ULTRA-METAL-POOR STARS. <i>Astrophysical Journal</i> , 2015 , 807, 173	4.7	85
90	THE DISSIMILAR CHEMICAL COMPOSITION OF THE PLANET-HOSTING STARS OF THE XO-2 BINARY SYSTEM. <i>Astrophysical Journal</i> , 2015 , 808, 13	4.7	66
89	Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way. <i>Nature</i> , 2015 , 527, 484	1-3 0.4	67
88	DIVISION G COMMISSION 36: THEORY OF STELLAR ATMOSPHERES. <i>Proceedings of the International Astronomical Union</i> , 2015 , 11, 453-473	0.1	
87	The Galactic chemical evolution of oxygen inferred from 3D non-LTE spectral-line-formation calculations. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2015 , 454, L11-L15	4.3	38
86	The elemental composition of the Sun. Astronomy and Astrophysics, 2015, 573, A27	5.1	147
85	NUCLEOSYNTHESIS IN A PRIMORDIAL SUPERNOVA: CARBON AND OXYGEN ABUNDANCES IN SMSS J031300.36B70839.3. <i>Astrophysical Journal Letters</i> , 2015 , 806, L16	7.9	51
84	The Solar Twin Planet Search. <i>Astronomy and Astrophysics</i> , 2015 , 581, A34	5.1	22
83	Iron and s-elements abundance variations in NGCI5286: comparison with Enomalous' globular clusters and Milky Way satellites. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 815-845	4.3	107
82	Shallow extra mixing in solar twins inferred from Be abundances. <i>Astronomy and Astrophysics</i> , 2015 , 576, L10	5.1	21
81	The elemental composition of the Sun. Astronomy and Astrophysics, 2015, 573, A25	5.1	150
8o	First light results from the High Efficiency and Resolution Multi-Element Spectrograph at the Anglo-Australian Telescope. <i>Journal of Astronomical Telescopes, Instruments, and Systems</i> , 2015 , 1, 0350	0021	44

79	The GALAH survey: scientific motivation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 2604-2617	4.3	386
78	HIGH-RESOLUTION SPECTROSCOPIC STUDY OF EXTREMELY METAL-POOR STAR CANDIDATES FROM THE SKYMAPPER SURVEY. <i>Astrophysical Journal</i> , 2015 , 807, 171	4.7	81
77	The elemental composition of the Sun. Astronomy and Astrophysics, 2015, 573, A26	5.1	184
76	A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3. <i>Nature</i> , 2014 , 506, 463-6	50.4	238
75	Chemical signatures of planets: beyond solar-twins. Astronomy and Astrophysics, 2014, 561, A7	5.1	52
74	The Solar Twin Planet Search. Astronomy and Astrophysics, 2014 , 572, A48	5.1	108
73	The PLATO 2.0 mission. Experimental Astronomy, 2014, 38, 249-330	1.3	672
72	Improvements to stellar structure models, based on a grid of 3D convection simulations II. Calibrating the mixing-length formulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 4366-4384	4.3	114
71	A high-precision chemical abundance analysis of the HAT-P-1 stellar binary: constraints on planet formation?. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2014 , 442, L51-L55	4.3	45
70	Helium enhanced stars and multiple populations along the horizontal branch of NGC 2808: direct spectroscopic measurements. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 1609-1627	4.3	111
69	The halo+cluster system of the Galactic globular cluster NGC 1851?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 3044-3064	4.3	50
68	EXPLORING THE ORIGIN OF LITHIUM, CARBON, STRONTIUM, AND BARIUM WITH FOUR NEW ULTRA METAL-POOR STARS. <i>Astrophysical Journal</i> , 2014 , 787, 162	4.7	60
67	GLOBAL AND NONGLOBAL PARAMETERS OF HORIZONTAL-BRANCH MORPHOLOGY OF GLOBULAR CLUSTERS. <i>Astrophysical Journal</i> , 2014 , 785, 21	4.7	89
66	STELLAR CHEMICAL ABUNDANCES: IN PURSUIT OF THE HIGHEST ACHIEVABLE PRECISION. <i>Astrophysical Journal</i> , 2014 , 795, 23	4.7	61
65	DOES SEGUE/SDSS INDICATE A DUAL GALACTIC HALO?. Astrophysical Journal, 2014, 786, 7	4.7	34
64	THE MOST METAL-POOR STARS. IV. THE TWO POPULATIONS WITH [Fe/H] ? B.O. Astrophysical Journal, 2013 , 762, 28	4.7	139
63	A GRID OF THREE-DIMENSIONAL STELLAR ATMOSPHERE MODELS OF SOLAR METALLICITY. I. GENERAL PROPERTIES, GRANULATION, AND ATMOSPHERIC EXPANSION. <i>Astrophysical Journal</i> , 2013 , 769, 18	4.7	99
62	How realistic are solar model atmospheres?. Astronomy and Astrophysics, 2013, 554, A118	5.1	62

(2010-2013)

61	The lithium isotopic ratio in very metal-poor stars. Astronomy and Astrophysics, 2013, 554, A96	5.1	104
60	The SUMO project I. A survey of multiple populations in globular clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 2126-2149	4.3	100
59	The Stagger-grid: A grid of 3D stellar atmosphere models. <i>Astronomy and Astrophysics</i> , 2013 , 557, A26	5.1	151
58	THE MOST METAL-POOR STARS. I. DISCOVERY, DATA, AND ATMOSPHERIC PARAMETERS. Astrophysical Journal, 2013 , 762, 25	4.7	50
57	A METHOD FOR ESTIMATING PARALLAXES OF VCBS: MODIFICATION TO HIPPARCOS PARALLAX MEASUREMENTS. International Journal of Modern Physics Conference Series, 2013 , 23, 64-73	0.7	3
56	The GALAH survey. <i>Proceedings of the International Astronomical Union</i> , 2013 , 9, 322-325	0.1	3
55	THE MOST METAL-POOR STARS. II. CHEMICAL ABUNDANCES OF 190 METAL-POOR STARS INCLUDING 10 NEW STARS WITH [Fe/H] ? B.5, ,. Astrophysical Journal, 2013 , 762, 26	4.7	207
54	Non-LTE line formation of Fe in late-type stars II. 1D spectroscopic stellar parameters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 50-60	4.3	225
53	Non-LTE line formation of Fe in late-type stars II. Standard stars with 1D and <3D> model atmospheres. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 27-49	4.3	203
52	Integrating the HERMES spectrograph for the AAT 2012 ,		7
52 51	Integrating the HERMES spectrograph for the AAT 2012, The remarkable solar twin HIP\(\overline{1}\)6948: a prime target in the quest for other Earths. Astronomy and Astrophysics, 2012, 543, A29	5.1	7
	The remarkable solar twin HIPI56948: a prime target in the quest for other Earths. <i>Astronomy and</i>	5.1	
51	The remarkable solar twin HIP\overline{5}6948: a prime target in the quest for other Earths. <i>Astronomy and Astrophysics</i> , 2012 , 543, A29 The double sub-giant branch of NGC\overline{6}656 (M 22): a chemical characterization. <i>Astronomy and</i>		91
51	The remarkable solar twin HIPI56948: a prime target in the quest for other Earths. <i>Astronomy and Astrophysics</i> , 2012 , 543, A29 The double sub-giant branch of NGCI6656 (M 22): a chemical characterization. <i>Astronomy and Astrophysics</i> , 2012 , 541, A15 3D LTE spectral line formation with scattering in red giant stars. <i>Astronomy and Astrophysics</i> , 2011 ,	5.1	91
51 50 49	The remarkable solar twin HIP\overline{56948}: a prime target in the quest for other Earths. Astronomy and Astrophysics, 2012, 543, A29 The double sub-giant branch of NGC\overline{6656} (M 22): a chemical characterization. Astronomy and Astrophysics, 2012, 541, A15 3D LTE spectral line formation with scattering in red giant stars. Astronomy and Astrophysics, 2011, 529, A158 The StaggerGrid project: a grid of 3-D model atmospheres for high-precision spectroscopy. Journal	5.1	91 62 37
51 50 49 48	The remarkable solar twin HIPI56948: a prime target in the quest for other Earths. <i>Astronomy and Astrophysics</i> , 2012 , 543, A29 The double sub-giant branch of NGCI6656 (M 22): a chemical characterization. <i>Astronomy and Astrophysics</i> , 2012 , 541, A15 3D LTE spectral line formation with scattering in red giant stars. <i>Astronomy and Astrophysics</i> , 2011 , 529, A158 The StaggerGrid project: a grid of 3-D model atmospheres for high-precision spectroscopy. <i>Journal of Physics: Conference Series</i> , 2011 , 328, 012003 Non-LTE calculations for neutral Na in late-type stars using improved atomic data. <i>Astronomy and</i>	5.1 5.1 0.3	91 62 37 28
51 50 49 48	The remarkable solar twin HIPI56948: a prime target in the quest for other Earths. <i>Astronomy and Astrophysics</i> , 2012 , 543, A29 The double sub-giant branch of NGCI5656 (M 22): a chemical characterization. <i>Astronomy and Astrophysics</i> , 2012 , 541, A15 3D LTE spectral line formation with scattering in red giant stars. <i>Astronomy and Astrophysics</i> , 2011 , 529, A158 The StaggerGrid project: a grid of 3-D model atmospheres for high-precision spectroscopy. <i>Journal of Physics: Conference Series</i> , 2011 , 328, 012003 Non-LTE calculations for neutral Na in late-type stars using improved atomic data. <i>Astronomy and Astrophysics</i> , 2011 , 528, A103 New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s).	5.1 5.1 0.3 5.1	91 62 37 28 241

43	An absolutely calibratedTeffscale from the infrared flux method. <i>Astronomy and Astrophysics</i> , 2010 , 512, A54	5.1	519
42	Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres. <i>Astronomy and Astrophysics</i> , 2010 , 517, A49	5.1	98
41	The solar, exoplanet and cosmological lithium problems. <i>Astrophysics and Space Science</i> , 2010 , 328, 193	-21000	37
40	Departures from LTE for neutral Li in late-type stars. <i>Astronomy and Astrophysics</i> , 2009 , 503, 541-544	5.1	191
39	Oxygen lines in solar granulation. Astronomy and Astrophysics, 2009, 508, 1403-1416	5.1	61
38	Accurate abundance patterns of solar twins and analogs. <i>Astronomy and Astrophysics</i> , 2009 , 508, L17-L2	05.1	195
37	NEW SOLAR COMPOSITION: THE PROBLEM WITH SOLAR MODELS REVISITED. <i>Astrophysical Journal</i> , 2009 , 705, L123-L127	4.7	259
36	The Chemical Composition of the Sun. Annual Review of Astronomy and Astrophysics, 2009, 47, 481-522	31.7	5468
35	Signatures of intrinsic Li depletion and Li-Na anti-correlation in the metal-poor globular cluster NGCI6397. <i>Astronomy and Astrophysics</i> , 2009 , 503, 545-557	5.1	157
34	THE PECULIAR SOLAR COMPOSITION AND ITS POSSIBLE RELATION TO PLANET FORMATION. Astrophysical Journal, 2009 , 704, L66-L70	4.7	293
33	Solar Surface Convection. <i>Living Reviews in Solar Physics</i> , 2009 , 6, 2	24.8	214
32	ON THE SOLAR NICKEL AND OXYGEN ABUNDANCES. Astrophysical Journal, 2009 , 691, L119-L122	4.7	51
31	Primordial and Pre-Galactic Origins of the Lithium Isotopes 2008,		9
30	Does the Sun have a subsolar metallicity?. <i>Proceedings of the International Astronomical Union</i> , 2008 , 4, 13-26	0.1	8
29	Stellar abundances tracing the formation of the Galactic Bulge. <i>Proceedings of the International Astronomical Union</i> , 2008 , 4, 153-158	0.1	
28	Chemical Homogeneity in Collinder 261 and Implications for Chemical Tagging. <i>Astronomical Journal</i> , 2007 , 133, 1161-1175	4.9	105
27	Three-dimensional hydrodynamical simulations of surface convection in red giant stars. <i>Astronomy and Astrophysics</i> , 2007 , 469, 687-706	5.1	151
26	The Solar Chemical Composition. <i>Space Science Reviews</i> , 2007 , 130, 105-114	7.5	469

(2003-2006)

25	Line formation in solar granulation. Astronomy and Astrophysics, 2006, 456, 675-688	5.1	65
24	New and improved experimental oscillator strengths in Zr II and the solar abundance of zirconium. <i>Astronomy and Astrophysics</i> , 2006 , 456, 1181-1185	5.1	87
23	Convection and the solar abundances: Does the sun have a sub-solar metallicity?. <i>Proceedings of the International Astronomical Union</i> , 2006 , 2, 122-129	0.1	
22	The Oxygen Abundance of HE 1327-2326. Astrophysical Journal, 2006 , 638, L17-L20	4.7	55
21	The Chemical Compositions of the Extreme Halo Stars HE 0107-5240 and HE 1327-2326 Inferred from Three-dimensional Hydrodynamical Model Atmospheres. <i>Astrophysical Journal</i> , 2006 , 644, L121-L2	1247	75
20	HE 1327🛘326, an Unevolved Star with [Fe/H] . Astrophysical Journal, 2006 , 639, 897-917	4.7	158
19	New Light on Stellar Abundance Analyses: Departures from LTE and Homogeneity. <i>Annual Review of Astronomy and Astrophysics</i> , 2005 , 43, 481-530	31.7	520
18	Lithium isotopic abundances in metal-poor stars. <i>Proceedings of the International Astronomical Union</i> , 2005 , 1, 53-58	0.1	3
17	Chemical Abundance Patterns of Extremely Metal-Poor Stars with [Fe/H]. <i>Proceedings of the International Astronomical Union</i> , 2005 , 1, 195-200	0.1	1
16	The new record holder for the most iron-poor star: HE 1327\(\mathbb{I}\)326, a dwarf or subgiant with [Fe/H[=\mathbb{B}.4. Proceedings of the International Astronomical Union, 2005, 1, 207-212	0.1	3
15	Nucleosynthetic signatures of the first stars. <i>Nature</i> , 2005 , 434, 871-3	50.4	419
14	Line formation in solar granulation. Astronomy and Astrophysics, 2005, 431, 693-705	5.1	146
13	Astronomy. A stellar swan-song. <i>Science</i> , 2005 , 308, 210-1	33.3	1
12	Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations. <i>Astronomy and Astrophysics</i> , 2004 , 423, 1109-1117	5.1	77
11	Line formation in solar granulation. Astronomy and Astrophysics, 2004, 417, 751-768	5.1	633
10	Line formation in solar granulation. Astronomy and Astrophysics, 2004, 417, 769-774	5.1	36
9	Inelastic H+Li and H-+Li+collisions and non-LTE Li I line formation in stellar atmospheres. <i>Astronomy and Astrophysics</i> , 2003 , 409, L1-L4	5.1	95
8	Multi-level 3D non-LTE computations of lithium lines in the metal-poor halo stars HD 140283 and HD 84937. <i>Astronomy and Astrophysics</i> , 2003 , 399, L31-L34	5.1	68

7	V838 Monocerotis A Newly Discovered, Very Peculiar, Slow Nova-Like Object. <i>International Astronomical Union Colloquium</i> , 2002 , 187, 345-350		1
6	A Reappraisal of the Solar Photospheric C/O Ratio. <i>Astrophysical Journal</i> , 2002 , 573, L137-L140	4.7	364
5	Chemical Abundances from Inversions of Stellar Spectra: Analysis of Solar-Type Stars with Homogeneous and Static Model Atmospheres. <i>Astrophysical Journal</i> , 2001 , 558, 830-851	4.7	41
4	The [ITAL]Forbidden[/ITAL] Abundance of Oxygen in the Sun. <i>Astrophysical Journal</i> , 2001 , 556, L63-L66	4.7	795
3	The GALAH Survey: Dependence of elemental abundances on age and metallicity for stars in the Galactic disc. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	5
2	The solar carbon, nitrogen, and oxygen abundances from a 3D LTE analysis of molecular lines. <i>Astronomy and Astrophysics</i> ,	5.1	2
1	Detailed elemental abundances of binary stars: searching for signatures of planet formation and atomic diffusion. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	2