
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5174015/publications.pdf Version: 2024-02-01

Κλητι Ρ. Ρλι

#	Article	IF	CITATIONS
1	Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute–Working Group 1996 guidelines. Blood, 2008, 111, 5446-5456.	1.4	2,887
2	lg V Gene Mutation Status and CD38 Expression As Novel Prognostic Indicators in Chronic Lymphocytic Leukemia. Blood, 1999, 94, 1840-1847.	1.4	2,291
3	iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood, 2018, 131, 2745-2760.	1.4	1,069
4	In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. Journal of Clinical Investigation, 2005, 115, 755-764.	8.2	515
5	Chronic lymphocytic leukaemia. Nature Reviews Disease Primers, 2017, 3, 16096.	30.5	363
6	Chronic Lymphocytic Leukemia Cells Recognize Conserved Epitopes Associated with Apoptosis and Oxidation. Molecular Medicine, 2008, 14, 665-674.	4.4	174
7	Intraclonal Complexity in Chronic Lymphocytic Leukemia: Fractions Enriched in Recently Born/Divided and Older/Quiescent Cells. Molecular Medicine, 2011, 17, 1374-1382.	4.4	140
8	ldentification of outcome-correlated cytokine clusters in chronic lymphocytic leukemia. Blood, 2011, 118, 5201-5210.	1.4	110
9	High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood, 2016, 128, 2931-2940.	1.4	102
10	Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature, 2019, 570, 474-479.	27.8	86
11	Chronic lymphocytic leukemia (CLL) treatment: So many choices, such great options. Cancer, 2019, 125, 1432-1440.	4.1	68
12	Th17 and non-Th17 interleukin-17-expressing cells in chronic lymphocytic leukemia: delineation, distribution, and clinical relevance. Haematologica, 2012, 97, 599-607.	3.5	65
13	IGHV-unmutated and IGHV-mutated chronic lymphocytic leukemia cells produce activation-induced deaminase protein with a full range of biologic functions. Blood, 2012, 120, 4802-4811.	1.4	52
14	TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. Journal of Immunology, 2015, 195, 901-923.	0.8	47
15	Characterization of structurally defined epitopes recognized by monoclonal antibodies produced by chronic lymphocytic leukemia B cells. Blood, 2009, 114, 3615-3624.	1.4	37
16	IGHV1-69 B Cell Chronic Lymphocytic Leukemia Antibodies Cross-React with HIV-1 and Hepatitis C Virus Antigens as Well as Intestinal Commensal Bacteria. PLoS ONE, 2014, 9, e90725.	2.5	37
17	lbrutinib In Combination With Bendamustine and Rituximab Is Active and Tolerable In Patients With Relapsed/Refractory CLL/SLL: Final Results Of a Phase 1b Study. Blood, 2013, 122, 525-525.	1.4	32
18	A Systematic Search Into The Role Of IGHV Gene Replacement In Shaping The Immunoglobulin Repertoire Of Chronic Lymphocytic Leukemia. Blood, 2013, 122, 4129-4129.	1.4	30

#	Article	IF	CITATIONS
19	Therapeutic potential of new B cell-targeted agents in the treatment of elderly and unfit patients with chronic lymphocytic leukemia. Journal of Hematology and Oncology, 2015, 8, 85.	17.0	29
20	Chronic lymphocytic leukemia cells diversify and differentiate in vivo via a nonclassical Th1-dependent, Bcl-6–deficient process. JCI Insight, 2016, 1, .	5.0	29
21	Chronic Lymphocytic Leukemia. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a035220.	6.2	28
22	Myeloid-derived suppressor cell subtypes differentially influence T-cell function, T-helper subset differentiation, and clinical course in CLL. Leukemia, 2021, 35, 3163-3175.	7.2	25
23	Musashi 2 influences chronic lymphocytic leukemia cell survival and growth making it a potential therapeutic target. Leukemia, 2021, 35, 1037-1052.	7.2	19
24	A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes. Immunologic Research, 2015, 63, 90-100.	2.9	18
25	Mechanistic Insights into CpG DNA and IL-15 Synergy in Promoting B Cell Chronic Lymphocytic Leukemia Clonal Expansion. Journal of Immunology, 2018, 201, 1570-1585.	0.8	16
26	Identification and characterization of distinct IL-17F expression patterns and signaling pathways in chronic lymphocytic leukemia and normal B lymphocytes. Immunologic Research, 2015, 63, 216-227.	2.9	15
27	Combinations of idelalisib with rituximab and/or bendamustine in patients with recurrent indolent non-Hodgkin lymphoma. Blood Advances, 2016, 1, 122-131.	5.2	15
28	Binding of CLL Subset 4 B Cell Receptor Immunoglobulins to Viable Human Memory B Lymphocytes Requires a Distinctive IGKV Somatic Mutation. Molecular Medicine, 2017, 23, 1-12.	4.4	14
29	Rewiring of sIgM-Mediated Intracellular Signaling through the CD180 Toll-like Receptor. Molecular Medicine, 2015, 21, 46-57.	4.4	12
30	Idelalisib in Combination With Rituximab or Bendamustine or Both in Patients With Relapsed/Refractory Chronic Lymphocytic Leukemia. HemaSphere, 2018, 2, e39.	2.7	12
31	Post-Transformation IGHV-IGHD-IGHJ Mutations in Chronic Lymphocytic Leukemia B Cells: Implications for Mutational Mechanisms and Impact on Clinical Course. Frontiers in Oncology, 2021, 11, 640731.	2.8	12
32	Clinical Activity Of Idelalisib (GS-1101), a Selective Inhibitor Of PI3Kδ, In Phase 1 and 2 Trials In Chronic Lymphocytic Leukemia (CLL): Effect Of Del(17p)/TP53 Mutation, Del(11q), IGHV Mutation, and NOTCH1 Mutation. Blood, 2013, 122, 1632-1632.	1.4	12
33	Chronic lymphocytic leukemia immunoglobulins display bacterial reactivity that converges and diverges from auto-/poly-reactivity and IGHV mutation status. Clinical Immunology, 2016, 172, 44-51.	3.2	11
34	A Detailed Analysis of Parameters Supporting the Engraftment and Growth of Chronic Lymphocytic Leukemia Cells in Immune-Deficient Mice. Frontiers in Immunology, 2021, 12, 627020.	4.8	11
35	Polyreactive Monoclonal Antibodies Synthesized by Some B-CLL Cells Recognize Specific Antigens on Viable and Apoptotic T Cells Blood, 2006, 108, 2813-2813.	1.4	11
36	A Phase 1 Study Of The Selective PI3KδInhibitor Idelalisib (GS-1101) In Combination With Therapeutic Anti-CD20 Antibodies (Rituximab or Ofatumumab) In Patients With Relapsed Or Refractory Chronic Lymphocytic Leukemia. Blood, 2013, 122, 4180-4180.	1.4	10

#	Article	IF	CITATIONS
37	Long-Term Follow-up of a Phase 1 Trial of Idelalisib (ZYDELIG®) in Combination with Bendamustine (B), Bendamustine/Rituximab (BR), Fludarabine (F), Chlorambucil (Chl), or Chlorambucil/Rituximab (ChlR) in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL). Blood, 2014, 124, 3343-3343.	1.4	10
38	B cell receptor isotypes differentially associate with cell signaling, kinetics, and outcome in chronic lymphocytic leukemia. Journal of Clinical Investigation, 2022, 132, .	8.2	10
39	Mechanism for IL-15–Driven B Cell Chronic Lymphocytic Leukemia Cycling: Roles for AKT and STAT5 in Modulating Cyclin D2 and DNA Damage Response Proteins. Journal of Immunology, 2019, 202, 2924-2944.	0.8	9
40	Durable Responses Following Treatment with the PI3K-Delta Inhibitor Idelalisib in Combination with Rituximab, Bendamustine, or Both, in Recurrent Indolent Non-Hodgkin Lymphoma: Phase I/II Results. Blood, 2014, 124, 3063-3063.	1.4	9
41	CCR4:CCL17 Interaction Influences TLR-9 Mediated Cell Survival and Proliferation In Chronic Lymphocytic Leukemia. Blood, 2010, 116, 3593-3593.	1.4	9
42	Longitudinal Analyses of CXCR4dimCD5brCD19+ Fractions of Chronic Lymphocytic Leukemia Clones Reveal Features Consistent with a Source of Clonal Heterogeneity. Blood, 2011, 118, 804-804.	1.4	9
43	Advances in the Clinical Staging of Chronic Lymphocytic Leukemia. Clinical Chemistry, 2011, 57, 1771-1772.	3.2	8
44	Treatment with Fludarabine and Rituximab Produces Extended Overall Survival (OS) and Progression-Free Survival (PFS) in Chronic Lymphocytic Leukemia (CLL) without Increased Risk of Second Malignancy: Long-Term Follow up of CALGB Study 9712 Blood, 2009, 114, 539-539.	1.4	8
45	Impact of Age on Outcomes Following Initial Therapy with Various Chemotherapy and Chemoimmunotherapy Regimens in Patients with Chronic Lymphocytic Leukemia (CLL): Results of CALGB Studies. Blood, 2011, 118, 289-289.	1.4	8
46	Outcomes of Patients with Chronic Lymphocytic Leukemia (CLL) after Idelalisib Therapy Discontinuation. Blood, 2015, 126, 4155-4155.	1.4	8
47	Fludarabine Versus Chlorambucil: Is the Debate Over?. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, S7-S9.	0.4	7
48	Chronic lymphocytic leukemia–like monoclonal B-cell lymphocytosis exhibits an increased inflammatory signature that is reduced in early-stage chronic lymphocytic leukemia. Experimental Hematology, 2021, 95, 68-80.	0.4	6
49	Chemo-Immunotherapy Combination Of Idelalisib With Bendamustine/Rituximab Or Chlorambucil/Rituximab In Patients With Relapsed/Refractory CLL Demonstrates Efficacy and Tolerability. Blood, 2013, 122, 4176-4176.	1.4	6
50	Long-Term Follow-up of a Phase 1 Study of Idelalisib (ZYDELIG®) in Combination with Anti-CD20 Antibodies (Rituximab [R] or Ofatumumab [O]) in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL). Blood, 2014, 124, 5653-5653.	1.4	6
51	Augmenting NF-κB in poor-risk CLL: A general paradigm for other cancers?. Journal of Experimental Medicine, 2015, 212, 830-831.	8.5	5
52	CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation. Blood Advances, 2020, 4, 893-905.	5.2	5
53	Lenalidomide and Rituximab for the Initial Treatment of Patients with Chronic Lymphocytic Leukemia (CLL) A Multicenter Study of the CLL Research Consortium. Blood, 2011, 118, 291-291.	1.4	5
54	Dual Inhibition of PI3K-δ and PI3K-γ By Duvelisib Eliminates CLL B Cells, Impairs CLL-Supporting Cells, and Overcomes Ibrutinib Resistance in a Patient-Derived Xenograft Model. Blood, 2018, 132, 4420-4420.	1.4	4

#	Article	IF	CITATIONS
55	CLL B Cells Develop Resistance to Ibrutinib By Reinvigorating the IL-4R - IL-4 Axis Blocked By Bruton's Tyrosine Kinase Inhibitors Including Acalabrutinib and Zanubrutinib. Blood, 2019, 134, 477-477.	1.4	4
56	Engraftment of CLL-Derived T Cells in NSG Mice Is Feasible, Can Support CLL Cell Proliferation, and Eliminates the Need for Third Party Antigen Presenting Cells. Blood, 2011, 118, 975-975.	1.4	4
57	B-Cell Chronic Lymphocytic Leukemia (B-CLL) Cells Unresponsive to CD180 Ligation Fail to Respond to Anti-IgM Stimulation as Well. Blood, 2010, 116, 3582-3582.	1.4	4
58	Ultra-Deep Sequencing of De Novo IGHV Mutations in Activated CLL Cells: Evidence for Activation-Induced Deaminase Function Blood, 2012, 120, 2545-2545.	1.4	4
59	Vemurafenib Has Potent Antitumor Activity in Patients with Relapsed/Refractory BRAF Mutant Hairy Cell Leukemia. Blood, 2014, 124, 24-24.	1.4	4
60	Chronic Lymphocytic Leukemia Patients with IGHV Genes Carrying Only Silent Mutations Have A Longer Time From Diagnosis to Initial Therapy Than Patients Expressing B-Cell Receptors with No Somatic Mutations. Blood, 2011, 118, 288-288.	1.4	3
61	Ibrutinib Inhibits Concomitant TLR and BCR- Driven Proliferation of Chronic Lymphocytic Leukemia Cells and Overrides the Supportive Survival-Promoting Effects of Microenvironmental Signals. Blood, 2014, 124, 3310-3310.	1.4	3
62	Efficacy and Safety of Hydroxychloroquine Sulphate In Chronic Lymphocytic Leukemia: Clinical Trial Experience In Untreated Patients. Blood, 2010, 116, 1392-1392.	1.4	3
63	Expression Levels of a Single Gene, Lymphoid Enhancer Binding Factor 1, Discriminates CLL B-Cells from Other B-Cell Malignancies Blood, 2007, 110, 1113-1113.	1.4	2
64	5-Year Follow-up of Patients with Relapsed/Refractory CLL Treated with Standard Chemotherapy with or without Oblimersen in Randomized Phase III Trial: Prognostic Factors and Predictive Factors for Treatment Effect. Blood, 2008, 112, 4201-4201.	1.4	2
65	Correlation of Leukemia-Cell Birth Rate Measured by Heavy Water Labeling with Other Prognostic Markers in Early Stage Chronic Lymphocytic Leukemia Blood, 2009, 114, 60-60.	1.4	2
66	Identification of Distinct Cytokine and Chemokine Clusters That Correlate with Outcome In B-Cell Chronic Lymphocytic Leukemia: Implications for Disease Pathogenesis. Blood, 2010, 116, 1368-1368.	1.4	2
67	In Vivo Evidence That Ibrutininb Deregulates Chemokine Receptor CXCR4 Surface Membrane Expression and Signaling, Along with Inhibiting B Cell Antigen Receptor Signaling, As Causes for Defective Homing and Impaired Retention of CLL Cells in Tissues. Blood, 2014, 124, 1948-1948.	1.4	2
68	Identification and Characterization of Peptide Ligands for Stereotyped Subset and Non-Subset B-Cell Receptors of Patients with M- and U-CLL Blood, 2009, 114, 4369-4369.	1.4	2
69	Activated CLL cells regulate IL-17F–producing Th17 cells in miR155-dependent and outcome-specific manners. JCl Insight, 2022, 7, .	5.0	2
70	FcγRIIb-BCR coligation inhibits BCR signaling in chronic lymphocytic leukemia. Haematologica, 2020, 106, 306-309.	3.5	1
71	Acquired Resistance to BRAF Inhibition in Hcl Is Rare and Retreatment with Vemurafenib at Relapse Can Induce High Response Rates: Final Results of a Phase II Trial of Vemurafenib in Relapsed Hcl. Blood, 2018, 132, 392-392.	1.4	1
72	Elevated IL-17 Producing Cells (Th17 and Non-Th17) In Different CLL Microenvironments: Correlation with Overall Survival, Prognostic Relevance and Phenotypic Heterogenity. Blood, 2010, 116, 2442-2442.	1.4	1

#	Article	IF	CITATIONS
73	CLL Sera Drive Maturation of Normal Monocytes to M2-like Macrophages By Direct and Indirect Mechanisms. Blood, 2014, 124, 1970-1970.	1.4	1
74	High-Level Expression of ROR1 Associates with Early Disease Progression in Patients with Chronic Lymphocytic Leukemia. Blood, 2015, 126, 1713-1713.	1.4	1
75	Somatic Hypermutation In Stereotyped Subset 4 BCRs/mAbs of CLL Patients, Expressing IGHV4-34 gene, Edit Anti-DNA Reactivity. Blood, 2010, 116, 2444-2444.	1.4	1
76	TLR-9 and B-Cell Antigen Receptor Triggering of Primary B Cells From Mantle Cell Lymphoma Induce Cell Proliferation and Telomerase Activity,. Blood, 2011, 118, 3690-3690.	1.4	1
77	Lenalidomide Promotes The Expansion Of CD8 T Cells With An Effector Memory Phenotype In a Murine Xenograft Model Of Chronic Lymphocytic Leukemia. Blood, 2013, 122, 119-119.	1.4	1
78	Remarkable Differences in Cellular Activation State and Migratory and Proliferative Potential among Clonal Cells Derived from Different Tissues of Chronic Lymphocytic Leukemia Patients Blood, 2006, 108, 2817-2817.	1.4	0
79	Genome Analysis of CLL by Representational Oligonucleotide Microarray Analysis (ROMA) Blood, 2006, 108, 2085-2085.	1.4	0
80	B-CLL Antibodies Encoded by Stereotypic VH1-69, D3-16, and JH3 Rearrangements Immunoprecipitate Non-Muscle Myosin Heavy Chain IIA Blood, 2007, 110, 739-739.	1.4	0
81	Frequently Occurring B-CLL Antibodies Recognize Apoptotic Cells That Expose Non-Muscle Myosin Heavy Chain IIA. Blood, 2008, 112, 3123-3123.	1.4	0
82	Autologous Human T Cells and Allogeneic Antigen-Presenting Cells Permit Effective Adoptive Transfer of B-CLL Cells Into Immune Deficient Mice Blood, 2009, 114, 2326-2326.	1.4	0
83	Th-17/IL-17 Axis in Chronic Lymphocytic Leukemia Blood, 2009, 114, 2357-2357.	1.4	0
84	Karyotype Results From CpG Oligodeoxynucleotide Stimulated Chronic Lymphocytic Leukemia (CLL) Cultures Are Consistent Among Laboratories: a CLL Research Consortium (CRC) Study Blood, 2009, 114, 1614-1614.	1.4	0
85	CCR4: TARC Interaction Provides Supplementary Pro-Survival and Proliferative Signals to Chronic Lymphocytic Leukemia Cells Blood, 2009, 114, 2327-2327.	1.4	0
86	Provision of Human Multimeric sCD40L to Immune Deficient NSG Mice Permits Efficient and Effective Adoptive Transfer and Proliferation of CLL Cells In Vivo. Blood, 2010, 116, 2430-2430.	1.4	0
87	Detection of Activation-Induced Cytidine Deaminase RNA In CLL Cells Correlates with Shorter Patient Survival and High Numbers of CD38+ Cells. Blood, 2010, 116, 2415-2415.	1.4	0
88	Chronic Lymphocytic Leukemia B Cells Variably Express Functional Activation-Induced Cytosine Deaminase Protein. Blood, 2010, 116, 378-378.	1.4	0
89	Some CLL Cells Bind Myosin-Exposed Apoptotic Cells. Exposure of Cytoplasmic Myosin Results From Transfer of Caspase-3 Dependent Cleavage Products to the Outer Cell Membrane. Blood, 2010, 116, 3900-3900.	1.4	0
90	Improved Outcome of CLL Patients with Leukemic Clones Expressing Mutated IGHV May Not Be Due to An Inability to Bind (auto)Antigen In Vivo. Blood, 2010, 116, 2441-2441.	1.4	0

#	Article	IF	CITATIONS
91	Co-Culture of CLL Cells with MEACs (Myosin Heavy Chain IIA Exposed Apoptotic Cells) Promotes Viability of Leukemic Clones. Blood, 2011, 118, 624-624.	1.4	0
92	Perspectives Among Primary Care Providers and Hematologist/Oncologists in the Coordination of Care for Patients with Hematologic Malignancies. Blood, 2011, 118, 3156-3156.	1.4	0
93	Targeted Oligonucleotide Array Assessment of Genomic Copy Number Alterations for Risk Stratification in Chronic Lymphocytic Leukemia. Blood, 2011, 118, 1773-1773.	1.4	0
94	Human CLL Intraclonal Fractions Differ in Their Abilities to Respond to, Elicit, and Suppress Pro-Engraftment and Growth Signals From Autologous T Cells in a Murine Adoptive Transfer Model. Blood, 2012, 120, 316-316.	1.4	0
95	CLL Cell Viability Promoted by Myosin Heavy Chain IIA Exposed Apoptotic Cells is BTK-dependent. Blood, 2012, 120, 1767-1767.	1.4	0
96	Apparent Involvement Of The Interferon, RNA Processing, and Wnt Signaling Pathways In Monoclonal B Lymphocytosis. Blood, 2013, 122, 4157-4157.	1.4	0
97	Concomitant, T-Independent TLR9-Mediated and BCR-Mediated Activation Provides Signals For Optimal Telomerase Induction In Chronic Lymphocytic Leukemia Cells Regardless Of IGHV Mutation Status. Blood, 2013, 122, 4142-4142.	1.4	Ο
98	Chronic Lymphocytic Leukemia Patients Exhibit Expanded Functional Granulocyte-like Myeloid Derived Suppressor Cells. Blood, 2014, 124, 3279-3279.	1.4	0
99	TLR-9 and IL-15-Driven Clonal Expansion of B-CLL Cells. Blood, 2014, 124, 1937-1937.	1.4	Ο
100	The RNA Binding Protein Musashi 2 Is up-Regulated in the Proliferative B-Cell Fraction of Chronic Lymphocytic Leukemia Clones. Blood, 2015, 126, 4149-4149.	1.4	0
101	CLL Intraclonal Fractions Defined By Time Since Cell Birth/Division Promote a Leukemia-Supportive, Immune-Tolerant Microenvironment By Distinct Mechanisms. Blood, 2018, 132, 1836-1836.	1.4	Ο
102	Chronic Lymphocytic Leukemia B Cells Display IgM and IgD Isotype-Restricted Features That Affect Association with Co-Receptors, BCR Signaling, and Leukemic B-Cell Growth In Vivo. Blood, 2018, 132, 3124-3124.	1.4	0
103	Serum Proteomic Analyses Suggest That the HMGB1 and Other Inflammatory Pathways Are Operational in MBL and Are Less in Overt CLL. Blood, 2021, 138, 2625-2625.	1.4	Ο
104	Efficacy of Ibrutinib Monotherapy in Pre-Clinical Mouse Models of Richter Transformation: Ibrutinib Effectively Reduces the Incidence of Richter Transformation but Fails in Treating Transformed Lymphoma, Especially in Primary Lymphoid Tissue. Blood, 2021, 138, 3708-3708.	1.4	0
105	Analyses of the Kinetics and Phenotype of Multiple Intraclonal CXCR4/CD5 B Cell Subsets Suggest Differences in Life Cycle Transitioning in CLL. Blood, 2021, 138, 2622-2622.	1.4	Ο