
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5174012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochemical characterization and process stability of polyphenoloxidase extracted from Victoria grape (Vitis vinifera ssp. Sativa). Food Chemistry, 2006, 94, 253-261.	4.2	92
2	Effect of thermal treatment on phenolic compounds from plum (prunus domestica) extracts – A kinetic study. Journal of Food Engineering, 2016, 171, 200-207.	2.7	84
3	Fluorescence spectroscopy and molecular modeling investigations on the thermally induced structural changes of bovine β-lactoglobulin. Innovative Food Science and Emerging Technologies, 2012, 15, 50-56.	2.7	73
4	Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate. LWT - Food Science and Technology, 2018, 95, 129-134.	2.5	73
5	CHARACTERIZATION AND INACTIVATION BY THERMAL AND PRESSURE PROCESSING OF STRAWBERRY (FRAGARIA ANANASSA) POLYPHENOL OXIDASE: A KINETIC STUDY. Journal of Food Biochemistry, 2006, 30, 56-76.	1.2	66
6	Analysis of the Thermally Induced Structural Changes of Bovine Lactoferrin. Journal of Agricultural and Food Chemistry, 2013, 61, 2234-2243.	2.4	54
7	Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment – Quantitative spectroscopic and kinetic approaches. Food Chemistry, 2017, 233, 442-449.	4.2	49
8	Microencapsulation of Anthocyanins from Grape Skins by Whey Protein Isolates and Different Polymers. Food and Bioprocess Technology, 2017, 10, 1715-1726.	2.6	47
9	Valorizations of carotenoids from sea buckthorn extract by microencapsulation and formulation of value-added food products. Journal of Food Engineering, 2018, 219, 16-24.	2.7	44
10	Thermal and High-Pressure Inactivation Kinetics of Polyphenol Oxidase in Victoria Grape Must. Journal of Agricultural and Food Chemistry, 2005, 53, 2988-2994.	2.4	43
11	Thermal Degradation Kinetics of Anthocyanins Extracted from Purple Maize Flour Extract and the Effect of Heating on Selected Biological Functionality. Foods, 2020, 9, 1593.	1.9	39
12	pH and heat-induced structural changes of bovine apo-α-lactalbumin. Food Chemistry, 2012, 131, 956-963.	4.2	37
13	A bottom-up approach for encapsulation of sour cherries anthocyanins by using β-lactoglobulin as matrices. Journal of Food Engineering, 2017, 210, 83-90.	2.7	37
14	Microencapsulation of lycopene from tomatoes peels by complex coacervation and freeze-drying: Evidences on phytochemical profile, stability and food applications. Journal of Food Engineering, 2021, 288, 110166.	2.7	36
15	Characterization, purification, and temperature/pressure stability of polyphenol oxidase extracted from plums (Prunus domestica). Process Biochemistry, 2017, 56, 177-185.	1.8	34
16	Advances in structure–function relationships of tyrosinase from Agaricus bisporus – Investigation on heat-induced conformational changes. Food Chemistry, 2014, 156, 129-136.	4.2	33
17	Thermal stability of the complex formed between carotenoids from sea buckthorn (Hippophae) Tj ETQq1 1 0.78 Spectroscopy, 2017, 173, 562-571.	4314 rgBT 2.0	/Overlock I (33
18	Phytochemicals and antioxidant activity degradation kinetics during thermal treatments of sour cherry extract. LWT - Food Science and Technology, 2017, 82, 139-146.	2.5	32

#	Article	IF	CITATIONS
19	Probing the Functionality of Bioactives from Eggplant Peel Extracts Through Extraction and Microencapsulation in Different Polymers and Whey Protein Hydrolysates. Food and Bioprocess Technology, 2019, 12, 1316-1329.	2.6	32
20	Investigations on binding mechanism of bioactives from elderberry (Sambucus nigra L.) by whey proteins for efficient microencapsulation. Journal of Food Engineering, 2018, 223, 197-207.	2.7	31
21	Widen the functionality of flavonoids from yellow onion skins through extraction and microencapsulation in whey proteins hydrolysates and different polymers. Journal of Food Engineering, 2019, 251, 29-35.	2.7	30
22	Fluorescence spectroscopy and molecular modeling of anthocyanins binding to bovine lactoferrin peptides. Food Chemistry, 2020, 318, 126508.	4.2	30
23	Value-Added Lager Beer Enriched with Eggplant (Solanum melongena L.) Peel Extract. Molecules, 2020, 25, 731.	1.7	28
24	Identification of adulterated sheep and goat cheeses marketed in Romania by immunocromatographic assay. Food and Agricultural Immunology, 2010, 21, 157-164.	0.7	26
25	Thermal inactivation of lactoperoxidase in goat, sheep and bovine milk – A comparative kinetic and thermodynamic study. Journal of Food Engineering, 2012, 113, 47-52.	2.7	26
26	pH-induced structural changes of tyrosinase from <i>Agaricus bisporus</i> using fluorescence and <i>in silico</i> methods. Journal of the Science of Food and Agriculture, 2014, 94, 2338-2344.	1.7	25
27	Effect of pH on Thermal and/or Pressure Inactivation of Victoria Grape (<i>Vitis vinifera sativa</i>) Polyphenol Oxidase: A Kinetic Study. Journal of Food Science, 2005, 70, E301.	1.5	22
28	Investigations on Sweet Cherry Phenolic Degradation During Thermal Treatment Based on Fluorescence Spectroscopy and Inactivation Kinetics. Food and Bioprocess Technology, 2016, 9, 1706-1715.	2.6	22
29	The kinetics of thermal degradation of polyphenolic compounds from elderberry (<i>Sambucus) Tj ETQq1 1 0.</i>	784314 rgB 1.1	T /Qyerlock 1
30	Exploring the process–structure–function relationship of horseradish peroxidase through investigation of pH- and heat induced conformational changes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 147, 43-50.	2.0	21
31	New Functional Ingredients Based on Microencapsulation of Aqueous Anthocyanin-Rich Extracts Derived from Black Rice (Oryza sativa L.). Molecules, 2019, 24, 3389.	1.7	21
32	Eggplant Peels as a Valuable Source of Anthocyanins: Extraction, Thermal Stability and Biological Activities. Plants, 2021, 10, 577.	1.6	21
33	Valorizations of Sweet Cherries Skins Phytochemicals by Extraction, Microencapsulation and Development of Value-Added Food Products. Foods, 2019, 8, 188.	1.9	20
34	Interactions of flavonoids from yellow onion skins with whey proteins: Mechanisms of binding and microencapsulation with different combinations of polymers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 158-167.	2.0	20
35	Functional Enhancement of Bioactives from Black Beans and Lactic Acid Bacteria into an Innovative Food Ingredient by Comicroencapsulation. Food and Bioprocess Technology, 2020, 13, 978-987.	2.6	20
36	Chemical Composition and Antioxidant Profile of Sorghum (Sorghumbicolor (L.) Moench) and Pearl Millet (Pennisetumglaucum (L.) R.Br.) Grains Cultivated in the Far-North Region of Cameroon. Foods, 2022, 11, 2026.	1.9	19

#	Article	IF	CITATIONS
37	Transglutaminase mediated microencapsulation of sea buckthorn supercritical CO2 extract in whey protein isolate and valorization in highly value added food products. Food Chemistry, 2018, 262, 30-38.	4.2	17
38	Improvement of Quality Properties and Shelf Life Stability of New Formulated Muffins Based on Black Rice. Molecules, 2018, 23, 3047.	1.7	17
39	Value-Added Pastry Cream Enriched with Microencapsulated Bioactive Compounds from Eggplant (Solanum melongena L.) Peel. Antioxidants, 2020, 9, 351.	2.2	17
40	pH- and heat-induced structural changes of bovine α-lactalbumin in response to oleic acid binding. European Food Research and Technology, 2013, 236, 257-266.	1.6	16
41	Optimization of Betalain Pigments Extraction Using Beetroot by-Products as a Valuable Source. Inventions, 2021, 6, 50.	1.3	16
42	Assessing the heat induced changes in major cow and non-cow whey proteins conformation on kinetic and thermodynamic basis. Small Ruminant Research, 2013, 111, 129-138.	0.6	15
43	The Binding mechanism of anthocyanins from sour cherries (<i>Prunus cerasus</i> L) skins to bovine β-lactoglobulin: A fluorescence and <i>in silico</i> -based approach. International Journal of Food Properties, 2017, 20, S3096-S3111.	1.3	15
44	THERMAL AND HIGH PRESSURE INACTIVATION KINETICS OF VICTORIA GRAPE POLYPHENOL OXIDASE: FROM MODEL SYSTEMS TO GRAPE MUST. Journal of Food Process Engineering, 2006, 29, 269-286.	1.5	14
45	γ-Glutamyl transferase inactivation in milk and cream: A comparative kinetic study. Innovative Food Science and Emerging Technologies, 2011, 12, 56-61.	2.7	14
46	Co-Microencapsulation of Flavonoids from Yellow Onion Skins and Lactic Acid Bacteria Lead to Multifunctional Ingredient for Nutraceutical and Pharmaceutics Applications. Pharmaceutics, 2020, 12, 1053.	2.0	14
47	Extraction, purification and processing stability of peroxidase from plums (<i>Prunus domestica</i>). International Journal of Food Properties, 2018, 21, 2744-2757.	1.3	13
48	Microencapsulation of Red Grape Juice by Freeze drying and Application in Jelly Formulation. Food Technology and Biotechnology, 2020, 58, 20-28.	0.9	13
49	Beetroot By-Product as a Functional Ingredient for Obtaining Value-Added Mayonnaise. Processes, 2022, 10, 227.	1.3	13
50	Binding mechanisms between lycopene extracted from tomato peels and bovine β-lactoglobulin. Journal of Luminescence, 2018, 203, 582-589.	1.5	12
51	Fostering Lavender as a Source for Valuable Bioactives for Food and Pharmaceutical Applications through Extraction and Microencapsulation. Molecules, 2020, 25, 5001.	1.7	12
52	Spectroscopic and Molecular Modeling Investigation on the Interaction between Folic Acid and Bovine Lactoferrin from Encapsulation Perspectives. Foods, 2020, 9, 744.	1.9	12
53	Extraction andÂcharacterizationÂof bioactive compounds from eggplant peel usingÂultrasound – assisted extraction. Annals of the University Dunarea De Jos of Galati, Fascicle VI: Food Technology, 2019, 43, 40-53.	0.1	12
54	A Kinetic Study on the Heat-Induced Changes of Whey Proteins Concentrate at Two pH Values. Food and Bioprocess Technology, 2012, 5, 2160-2171.	2.6	11

#	Article	IF	CITATIONS
55	The Interaction of Bovine \hat{l}^2 -Lactoglobulin with Caffeic Acid: From Binding Mechanisms to Functional Complexes. Biomolecules, 2020, 10, 1096.	1.8	10
56	Inactivation kinetics of alkaline phosphatase from different species of milk using quinolyl phosphate as a substrate. Food Science and Biotechnology, 2014, 23, 1773-1778.	1.2	9
57	Modelling Contaminant Formation during Thermal Processing of Sea Buckthorn Purée. Molecules, 2019, 24, 1571.	1.7	9
58	Supercritical CO2 Extraction and Microencapsulation of Lycopene-Enriched Oleoresins from Tomato Peels: Evidence on Antiproliferative and Cytocompatibility Activities. Antioxidants, 2021, 10, 222.	2.2	9
59	Onion (<i>Allium cepa</i> L.) peel extracts characterization by conventional and modern methods. International Journal of Food Engineering, 2021, 17, 485-493.	0.7	9
60	Value-added salad dressing enriched with red onion skin anthocyanins entrapped in different biopolymers. Food Chemistry: X, 2022, 15, 100374.	1.8	9
61	Investigations towards understanding the thermal denaturation of lactoperoxidase. International Dairy Journal, 2014, 38, 47-54.	1.5	8
62	Polymers and proteinâ€associated vesicles for the microencapsulation of anthocyanins from grape skins used for food applications. Journal of the Science of Food and Agriculture, 2021, 101, 2676-2686.	1.7	8
63	Whey Protein Isolate-Xylose Maillard-Based Conjugates with Tailored Microencapsulation Capacity of Flavonoids from Yellow Onions Skins. Antioxidants, 2021, 10, 1708.	2.2	8
64	Bioactive's Characterization, Biological Activities, and In Silico Studies of Red Onion (Allium cepa L.) Skin Extracts. Plants, 2021, 10, 2330.	1.6	8
65	Thermal Stability and Inhibitory Action of Red Grape Skin Phytochemicals against Enzymes Associated with Metabolic Syndrome. Antioxidants, 2022, 11, 118.	2.2	8
66	Value-Added Crackers Enriched with Red Onion Skin Anthocyanins Entrapped in Different Combinations of Wall Materials. Antioxidants, 2022, 11, 1048.	2.2	8
67	Modelling of acrylamide formation in thermally treated red bell peppers (Capsicum annuum L.). European Food Research and Technology, 2014, 238, 149-156.	1.6	7
68	Anthocyanins profile, total phenolics and antioxidant activity of two Romanian red grape varieties: FeteascÇŽ neagrÇŽ and BÇŽbeascÇŽ neagrÇŽ (Vitis vinifera). Chemical Papers, 2015, 69, .	1.0	7
69	Journal of Food Quality Thermal Degradation of Plum Anthocyanins: Comparison of Kinetics from Simple to Natural Systems. Journal of Food Quality, 2018, 2018, 1-10.	1.4	7
70	Investigations on thermostability of carotenoids from tomato peels in oils using a kinetic approach. Journal of Food Processing and Preservation, 2020, 44, e14303.	0.9	7
71	Acrylamide content and antioxidant capacity in thermally processed fruit products. Potravinarstvo, 2015, 9, 90-94.	0.5	6
72	Impact of Wall Materials on Physico-Chemical Properties and Stability of Eggplant Peels Anthocyanin Hydrogels. Inventions, 2021, 6, 47.	1.3	5

#	Article	IF	CITATIONS
73	Effect of Thermal Processing on Simultaneous Formation of Acrylamide and Hydroxymethylfurfural in Plum Purée. Polish Journal of Food and Nutrition Sciences, 2019, 69, 179-189.	0.6	5
74	Kinetics of Phytochemicals Degradation During Thermal Processing of Fruits Beverages. , 2019, , 407-440.		4
75	Ultrasound and enzymatic assisted extractions of bioactive compounds found in red grape skins Băbească Neagră (Vitis vinifera) variety. Annals of the University Dunarea De Jos of Galati, Fascicle VI: Food Technology, 2021, 45, 9-25.	0.1	4
76	Insights of Sea Buckthorn Extract's Encapsulation by Coacervation Technique. Inventions, 2021, 6, 59.	1.3	4
77	Advanced Composites Based on Sea Buckthorn Carotenoids for Mayonnaise Enrichment. Polymers, 2022, 14, 548.	2.0	4
78	Kinetic and thermodynamic parameters of alkaline phosphatase and γ—glutamyl transferase inactivation in bovine milk. Dairy Science and Technology, 2011, 91, 701-717.	2.2	3
79	Microorganism Metabolic Activity Stimulation by Polyphenols. , 2014, , 513-521.		3
80	β-lactoglobulin and its thermolysin derived hydrolysates on regulating selected biological functions of onion skin flavonoids through microencapsulation. CYTA - Journal of Food, 2021, 19, 127-136.	0.9	3
81	Multifunctional Ingredient from Aqueous Flavonoidic Extract of Yellow Onion Skins with Cytocompatibility and Cell Proliferation Properties. Applied Sciences (Switzerland), 2021, 11, 7243.	1.3	3
82	Biochemical and Structural Changes of Taro (Colocasia esculenta) Tubers During Simple Thermal Treatments (Low Temperature) or in Combination with Chemicals. Food and Bioprocess Technology, 2012, 5, 2739-2747.	2.6	2
83	Fluorescence spectroscopy investigation on pH and heat changes of cherries anthocyanin extracts. Journal of Biotechnology, 2015, 208, S68.	1.9	2
84	Antioxidative Capacity of and Contaminant Concentrations in Processed Plum Products Consumed in Romania. Journal of Food Protection, 2018, 81, 1313-1320.	0.8	2
85	Bovine βâ€lactoglobulin peptides as novel carriers for flavonoids extracted with supercritical fluids from yellow onion skins. Journal of Food Science, 2020, 85, 4290-4299.	1.5	2
86	Bioactive compounds and ethnomedicinal uses of Syzygium cumini (L.) Skeels-A comprehensive review. Annals of the University Dunarea De Jos of Galati, Fascicle VI: Food Technology, 2020, 44, 178-192.	0.1	2
87	Recovery of bioactive compounds from red onion skins using conventional solvent extraction and microwave assisted extraction. Annals of the University Dunarea De Jos of Galati, Fascicle VI: Food Technology, 2020, 44, 104-126.	0.1	2
88	In vitro antioxidant potential and antimicrobial activity of some Cameroonian plant extracts. Annals of the University Dunarea De Jos of Galati, Fascicle VI: Food Technology, 2021, 45, 96-116.	0.1	2
89	New Insights on Winemaking of White Grapes. , 2019, , 103-145.		0
90	Designing glutenâ€free, anthocyaninsâ€enriched cookies on scientific basis. International Journal of Food Science and Technology, 2022, 57, 4726-4735.	1.3	0

#	Article	IF	CITATIONS
91	Editorial for Special Issue "Perspectives and Challenges in Doctoral Research—Selected Papers from the 9th Edition of the Scientific Conference of the Doctoral Schools from the "Dunărea de Jos― Inventions, 2022, 7, 33.	1.3	О