List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5173988/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Robust Packetized MPC for Networked Systems Subject to Packet Dropouts and Input Saturation With<br>Quantized Feedback. IEEE Transactions on Cybernetics, 2023, 53, 6987-6997.                                                                                    | 6.2 | 8         |
| 2  | Output-Feedback Self-Synchronization of Directed Lur'e Networks via Global Connectivity. IEEE<br>Transactions on Cybernetics, 2022, 52, 6490-6503.                                                                                                                | 6.2 | 2         |
| 3  | Fuzzy Adaptive Cooperative Consensus Tracking of High-Order Nonlinear Multiagent Networks With<br>Guaranteed Performances. IEEE Transactions on Cybernetics, 2022, 52, 8838-8850.                                                                                 | 6.2 | 24        |
| 4  | Observer-Based Control Design for Nonlinear Systems With Unknown Delays. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1327-1331.                                                                                                       | 2.2 | 3         |
| 5  | Nonlinear observer for electromagnetic position estimation using active current control.<br>Mechanical Systems and Signal Processing, 2022, 167, 108449.                                                                                                          | 4.4 | 2         |
| 6  | Unknown input estimation algorithms for a class of LPV/nonlinear systems with application to<br>wastewater treatment process. Proceedings of the Institution of Mechanical Engineers Part I: Journal<br>of Systems and Control Engineering, 2022, 236, 1372-1385. | 0.7 | 2         |
| 7  | LMI-Based Observer Design for Non-Globally Lipschitz Systems Using Kirszbraun–Valentine Extension<br>Theorem. , 2022, 6, 2617-2622.                                                                                                                               |     | 6         |
| 8  | Observer Design for Non-Globally Lipschitz Nonlinear Systems Using Hilbert Projection Theorem. ,<br>2022, 6, 2581-2586.                                                                                                                                           |     | 3         |
| 9  | An LMI-based discrete time nonlinear observer for Light-Emitting Diode optical communication.<br>Automatica, 2022, 141, 110309.                                                                                                                                   | 3.0 | 3         |
| 10 | On high-gain observer design for nonlinear systems with delayed output measurements. Automatica,<br>2022, 141, 110281.                                                                                                                                            | 3.0 | 11        |
| 11 | Simultaneous Cyber-Attack Detection and Radar Sensor Health Monitoring in Connected ACC Vehicles.<br>IEEE Sensors Journal, 2021, 21, 15741-15752.                                                                                                                 | 2.4 | 19        |
| 12 | On LMI conditions to design robust static output feedback controller for continuous-time linear<br>systems subject to norm-bounded uncertainties. International Journal of Systems Science, 2021, 52,<br>12-46.                                                   | 3.7 | 21        |
| 13 | Interval Observer Design and Consensus of MultiAgent Systems with Time-Varying Interval Uncertainties. SIAM Journal on Control and Optimization, 2021, 59, 3392-3417.                                                                                             | 1.1 | 19        |
| 14 | Finite-time estimation algorithms for LPV discrete-time systems with application to output feedback stabilization. Automatica, 2021, 125, 109436.                                                                                                                 | 3.0 | 5         |
| 15 | Magnetic position estimation using optimal sensor placement and nonlinear observer for smart actuators. Control Engineering Practice, 2021, 112, 104817.                                                                                                          | 3.2 | 8         |
| 16 | Simultaneous State Estimation and Tire Model Learning for Autonomous Vehicle Applications.<br>IEEE/ASME Transactions on Mechatronics, 2021, 26, 1941-1950.                                                                                                        | 3.7 | 7         |
| 17 | Coupled Tanks State Estimation Using a High-Gain Like Observer. IFAC-PapersOnLine, 2021, 54, 96-101.                                                                                                                                                              | 0.5 | 3         |
| 18 | Hâ^ž Switched-Gain Based Observer vs Nonlinear Transformation Based Observer for a Vehicle Tracking<br>Model. IFAC-PapersOnLine, 2021, 54, 126-131.                                                                                                               | 0.5 | 0         |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Prescribed-Time High-Gain Nonlinear Observer Design for Triangular Systems. , 2021, , .                                                                                                                         |     | 1         |
| 20 | LMI Feasibility Improvement to Design Observers for a Class of Lipschitz Nonlinear Systems. , 2021, , .                                                                                                         |     | 3         |
| 21 | Performance analysis of stand-alone six-phase induction generator using heuristic algorithms.<br>Mathematics and Computers in Simulation, 2020, 167, 231-249.                                                   | 2.4 | 8         |
| 22 | Vehicle Motion Estimation Using A Switched Gain Nonlinear Observer. , 2020, , .                                                                                                                                 |     | 0         |
| 23 | On the need for switched-gain observers for non-monotonic nonlinear systems. Automatica, 2020, 114, 108814.                                                                                                     | 3.0 | 36        |
| 24 | A Switched-Gain Nonlinear Observer for LED Optical Communication. IFAC-PapersOnLine, 2020, 53, 4941-4946.                                                                                                       | 0.5 | 2         |
| 25 | Robust Static Output Feedback Stabilization of Continuous-Time Linear Systems via Enhanced LMI<br>Conditions. IFAC-PapersOnLine, 2020, 53, 4540-4545.                                                           | 0.5 | 3         |
| 26 | High-Gain Observer Design for Nonlinear Systems with Delayed Outputs. IFAC-PapersOnLine, 2020, 53, 5057-5062.                                                                                                   | 0.5 | 8         |
| 27 | Nonlinear Observer design for Systems with Sampled Measurements: An LPV Approach.<br>IFAC-PapersOnLine, 2020, 53, 560-565.                                                                                      | 0.5 | Ο         |
| 28 | Optimistic vs Pessimistic Moving-Horizon Estimation for Quasi–LPV Discrete-Time Systems.<br>IFAC-PapersOnLine, 2020, 53, 5004-5009.                                                                             | 0.5 | 2         |
| 29 | State Observer Design Method for a Class of Nonlinear Systems. IFAC-PapersOnLine, 2020, 53, 4935-4940.                                                                                                          | 0.5 | Ο         |
| 30 | State observer design method for a class of nonâ€linear systems. IET Control Theory and Applications,<br>2020, 14, 1648-1655.                                                                                   | 1.2 | 2         |
| 31 | A nonlinear observer-based approach to fault detection, isolation and estimation for satellite formation flight application. Automatica, 2019, 107, 474-482.                                                    | 3.0 | 62        |
| 32 | Robust \$\$mathcal{H}_infty\$\$ Observer-based Stabilization of Linear Discrete-time Systems with<br>Parameter Uncertainties. International Journal of Control, Automation and Systems, 2019, 17,<br>2261-2273. | 1.6 | 2         |
| 33 | Delay-dependent unknown input observer for nonlinear time-delay systems with both Hâ^ž and W1,2 optimality criteria. , 2019, , 79-97.                                                                           |     | 1         |
| 34 | Control of Anaerobic Digestion Process. , 2019, , 99-135.                                                                                                                                                       |     | 2         |
| 35 | Static Output Feedback Control of Discrete-Time Linear Systems: Background Results and New LMI Conditions. , 2019, , .                                                                                          |     | 2         |
| 36 | A Nonlinear observer-based trajectory tracking method applied to an anaerobic digestion process.<br>Journal of Process Control, 2019, 75, 120-135.                                                              | 1.7 | 12        |

ALI ZEMOUCHE

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IF               | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 37 | A Robust Decentralized Observer-Based Stabilization Method for Interconnected Nonlinear Systems:<br>Improved LMI Conditions. , 2019, , 267-291.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 0         |
| 38 | Observer-Based Stabilization of Switched Discrete-Time Linear Systems With Parameter Uncertainties. , 2019, , 209-239.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 2         |
| 39 | A quadratic matrix inequality based PID controller design for LPV systems. Systems and Control Letters, 2019, 126, 67-76.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3              | 13        |
| 40 | Observer design of descriptor nonlinear system with nonlinear outputs by using <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mini overflow="scroll"><mml:msup><mml:miow><mml:mi mathvariant="bold-script">W</mml:mi></mml:miow><mml:miow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow>&lt;</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:miow></mml:msup></mml:mini></mml:msup></mml:math> | 1.9<br>> < mml:m | 1<br>n>2  |
| 41 | Practical Absolute Stabilization of Lur'e Systems via Periodic Event-Triggered Feedback. , 2019, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 3         |
| 42 | State Estimation of LPV Discrete-Time Systems with Application to Output Feedback Stabilization. , 2019, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 1         |
| 43 | Robust Data-Driven Neuro-Adaptive Observers With Lipschitz Activation Functions. , 2019, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 10        |
| 44 | Linear Position Estimation on Smart Actuators Using a Nonlinear Observer. , 2019, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 3         |
| 45 | Absolute Stabilization of Lurâ $\in$ Me Systems by Periodically Intermittent Control. , 2019, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 0         |
| 46 | High-Gain Nonlinear Observer With Lower Tuning Parameter. IEEE Transactions on Automatic Control, 2019, 64, 3194-3209.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.6              | 46        |
| 47 | Tracking of Vehicle Motion on Highways and Urban Roads Using a Nonlinear Observer. IEEE/ASME<br>Transactions on Mechatronics, 2019, 24, 644-655.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7              | 36        |
| 48 | A discreteâ€ŧime nonlinear state observer for the anaerobic digestion process. International Journal of<br>Robust and Nonlinear Control, 2019, 29, 1279-1301.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.1              | 13        |
| 49 | Nonlinear observer-based control with application to an anaerobic digestion process. European<br>Journal of Control, 2019, 45, 74-84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6              | 4         |
| 50 | Sequential LMI approach for the design of a BMIâ€based robust observer state feedback controller with nonlinear uncertainties. International Journal of Robust and Nonlinear Control, 2018, 28, 1246-1260.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1              | 30        |
| 51 | Observer Design of Descriptor Nonlinear System with N onlinear Outputs by Using W12 -Optimality<br>Criterion. , 2018, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 0         |
| 52 | Fault Sensor Detection and Estimation based on LPV Observer for Vehicle Lateral Dynamics. , 2018, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 0         |
| 53 | Advanced control and observer design for nonlinear systems via LMIs. European Journal of Control, 2018, 44, 1-2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.6              | 1         |
| 54 | A sequential LMI approach to design a BMI-based multi-objective nonlinear observer. European Journal of Control, 2018, 44, 50-57.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6              | 5         |

ALI ZEMOUCHE

| #  | Article                                                                                                                                                                                                        | IF                                                               | CITATIONS                |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|
| 55 | Actuator Fault Detection for Vehicle Lateral Dynamics. , 2018, , .                                                                                                                                             |                                                                  | Ο                        |
| 56 | Multi-Objective Nonlinear Observer Design using BMIs. , 2018, , .                                                                                                                                              |                                                                  | 1                        |
| 57 | Nonlinear Observer for Vehicle Motion Tracking. , 2018, , .                                                                                                                                                    |                                                                  | 7                        |
| 58 | LMI-Based Trajectory Tracking for a Class of Nonlinear Systems with Application to an Anaerobic<br>Digestion Process. , 2018, , .                                                                              |                                                                  | 6                        |
| 59 | <pre>\$mathcal{H}_{infty}\$ Observer for Descriptor Nonlinear Systems with Nonlinear Output Equations. , 2018, , .</pre>                                                                                       |                                                                  | 12                       |
| 60 | Robust \$mathcal{H}_{infty}\$ Observer-Based Stabilization of Linear Discrete-Time Systems with Parameter Uncertaintes. , 2018, , .                                                                            |                                                                  | 1                        |
| 61 | Observers with Dual Spatially Separated Sensors for Enhanced Estimation: Industrial, Automotive, and<br>Biomedical Applications. IEEE Control Systems, 2017, 37, 42-58.                                        | 1.0                                                              | 7                        |
| 62 | An LMI-Based H â^ž Discrete-Time Nonlinear State Observer Design for an Anaerobic Digestion Model.<br>IFAC-PapersOnLine, 2017, 50, 11547-11552.                                                                | 0.5                                                              | 2                        |
| 63 | A New LMI-Based Output Feedback Controller Design Method for Discrete-Time LPV Systems with Uncertain Parameters. IFAC-PapersOnLine, 2017, 50, 11349-11354.                                                    | 0.5                                                              | 6                        |
| 64 | Circle criterion-based <mmi:math xmins:mini="http://www.ws.org/1998/Math/Math/Math/Math/Math/Math/Math/Math&lt;/td"><td>nm<b>l3no</b>i&gt;<!--ı</td--><td>mm<b>tis</b>mrow&gt;<!--</td--></td></td></mmi:math> | nm <b>l3no</b> i> ı</td <td>mm<b>tis</b>mrow&gt;<!--</td--></td> | mm <b>tis</b> mrow> </td |
| 65 | Real-time automotive slip angle estimation with extended H <sub>â^ž</sub> circle criterion observer for nonlinear output system. , 2017, , .                                                                   |                                                                  | 1                        |
| 66 | Observer design for nonlinear systems by using high-gain and LPV/LMI-based technique. , 2017, , .                                                                                                              |                                                                  | 2                        |
| 67 | Output feedback stabilization of switching discrete-time linear systems with parameter uncertainties.<br>Journal of the Franklin Institute, 2017, 354, 5895-5918.                                              | 1.9                                                              | 27                       |
| 68 | LMI-based H <inf>â^ž</inf> nonlinear state observer design for anaerobic digestion model. ,<br>2017, , .                                                                                                       |                                                                  | 3                        |
| 69 | LMI-based invariant like nonlinear state observer for anaerobic digestion model. , 2017, , .                                                                                                                   |                                                                  | 1                        |
| 70 | â"، <inf>â^ž</inf> observer-based stabilization of switched discrete-time linear systems. , 2017, , .                                                                                                          |                                                                  | 0                        |
| 71 | A modified two-step LMI method to design observer-based controller for linear discrete-time systems with parameter uncertainties. , 2017, , .                                                                  |                                                                  | 1                        |
| 72 | LMI-based discrete-time nonlinear state observer for an anaerobic digestion model. , 2017, , .                                                                                                                 |                                                                  | 3                        |

ALI ZEMOUCHE

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Robust observerâ€based stabilization of Lipschitz nonlinear uncertain systems via LMIs ―discussions and new design procedure. International Journal of Robust and Nonlinear Control, 2017, 27, 1915-1939. | 2.1 | 54        |
| 74 | Robust observer-based H <inf>â^ž</inf> stabilization of switched discrete-time linear systems with parameter uncertainties. , 2017, , .                                                                   |     | 1         |
| 75 | Application of metaheuristic algorithms for steady state analysis of six-phase self-exited induction generator. , 2017, , .                                                                               |     | 0         |
| 76 | Observer with small gains in the presence of a long delay in the measurements. , 2017, , .                                                                                                                |     | 3         |
| 77 | A robust â"‹â^ž observer-based stabilization method for systems with uncertain parameters and Lipschitz<br>nonlinearities. International Journal of Robust and Nonlinear Control, 2016, 26, 1962-1979.    | 2.1 | 30        |
| 78 | Hâ^ž circle criterion observer design for Lipschitz nonlinear systems with enhanced LMI conditions. ,<br>2016, , .                                                                                        |     | 19        |
| 79 | New decentralized control design for interconnected nonlinear discrete-time systems with nonlinear interconnections. , 2016, , .                                                                          |     | 6         |
| 80 | Observer-based control design via LMIs for a class of switched discrete-time linear systems with parameter uncertainties. , 2016, , .                                                                     |     | 4         |
| 81 | On the enhancement of high-gain observers for state estimation of nonlinear systems. , 2016, , .                                                                                                          |     | 5         |
| 82 | A new LMI based H <inf>â^ž</inf> observer design method for Lipschitz nonlinear systems. ,<br>2016, , .                                                                                                   |     | 12        |
| 83 | Convex optimization based dual gain observer design for Lipschitz nonlinear systems. , 2016, , .                                                                                                          |     | 6         |
| 84 | A new LMI observer-based controller design method for discrete-time LPV systems with uncertain parameters. , 2016, , .                                                                                    |     | 7         |
| 85 | LPV unknown input observer for vehiclelateral dynamics. , 2016, , .                                                                                                                                       |     | 1         |
| 86 | Observer-based stabilization via LMIs for linear uncertain systems. , 2015, , .                                                                                                                           |     | 4         |
| 87 | Observer-based control design for a class of nonlinear systems subject to unknown inputs: LMI approach. , 2015, , .                                                                                       |     | 2         |
| 88 | Observer-based stabilisation of linear systems with parameter uncertainties by using enhanced LMI conditions. International Journal of Control, 2015, 88, 1189-1200.                                      | 1.2 | 23        |
| 89 | H <inf>∞</inf> -based fault diagnosis for diesel engines. , 2014, , .                                                                                                                                     |     | 1         |
| 90 | Robust ℋ <inf>∞</inf> observer-based controller for lipschitz<br>nonlinear discrete-time systems with parameter uncertainties. , 2014, , .                                                                |     | 4         |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Output feedback control for a class of switching discrete-time linear systems. , 2014, , .                                                                                                     |     | 1         |
| 92  | Delay-dependent robust unknown input observer for nonlinear time-delay systems. , 2014, , .                                                                                                    |     | 0         |
| 93  | A new observer-based controller design method for a class of time-varying delay systems with<br>Lipschitz nonlinearities. , 2014, , .                                                          |     | 11        |
| 94  | Observer-based control design for diesel engines via LMI. , 2014, , .                                                                                                                          |     | 0         |
| 95  | A new LMI condition for decentralized observer-based control of linear systems with nonlinear interconnections. , 2014, , .                                                                    |     | 14        |
| 96  | Real-Time Attitude-Independent Three-Axis Magnetometer Calibration for Spinning Projectiles: A Sliding<br>Window Approach. IEEE Transactions on Control Systems Technology, 2014, 22, 255-264. | 3.2 | 33        |
| 97  | Robust Observer and Observerâ€Based Controller for Timeâ€Delay Singular Systems. Asian Journal of<br>Control, 2014, 16, 80-94.                                                                 | 1.9 | 10        |
| 98  | On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica, 2013, 49, 585-591.                                                                                          | 3.0 | 280       |
| 99  | New LMI Condition for Observer-Based \$mathcal{H}_{infty}\$ Stabilization of a Class of Nonlinear Discrete-Time Systems. SIAM Journal on Control and Optimization, 2013, 51, 784-800.          | 1.1 | 33        |
| 100 | On LMI conditions to design observer-based controllers for linear systems with parameter uncertainties. Automatica, 2013, 49, 3700-3704.                                                       | 3.0 | 103       |
| 101 | Robust Unknown Input Observers for Nonlinear Time-Delay Systems. SIAM Journal on Control and Optimization, 2013, 51, 2735-2752.                                                                | 1.1 | 24        |
| 102 | Convex optimization approach to observer-based stabilization of linear systems with parameter uncertainties. , 2013, , .                                                                       |     | 0         |
| 103 | <i>â"&lt;</i> <sub>â^²</sub> / <i>â"&lt;</i> <sub>â^ž</sub> fault detection filter for a class of nonlinear descriptor<br>systems. International Journal of Control, 2013, 86, 253-262.        | 1.2 | 35        |
| 104 | Comments on "A Note on Observers for Discrete-Time Lipschitz Nonlinear Systems― IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60, 56-60.                                 | 2.2 | 15        |
| 105 | Output feedback control for discrete-time linear systems by using luenberger observers under unknown switching. , 2013, , .                                                                    |     | 3         |
| 106 | A multiplicative filter for GLMAV attitude estimation. , 2013, , .                                                                                                                             |     | 0         |
| 107 | A new observer-based stabilization method for linear systems with uncertain parameters. , 2013, , .                                                                                            |     | 10        |
| 108 | POD-based state estimation of simulated moving bed chromatographic processes. , 2013, , .                                                                                                      |     | 1         |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Adaptive output tracking control design of a gun launched micro aerial vehicle based on approximate feedback linearization. , 2013, , .                                                                                |     | 2         |
| 110 | Observers for continuous-time Lipschitz nonlinear systems. Analysis and comparisons. , 2012, , .                                                                                                                       |     | 0         |
| 111 | Observer based ℌ <inf>∞</inf> controllers for a class of nonlinear lipschitz discrete-time systems. , 2012, , .                                                                                                        |     | 0         |
| 112 | Observers design for discrete-time Lipschitz nonlinear systems. State of the art and new results. ,<br>2012, , .                                                                                                       |     | 2         |
| 113 | â"‹ <sub>â^ž</sub> Observers design for a class of nonlinear time-delay systems in descriptor form.<br>International Journal of Control, 2011, 84, 1653-1663.                                                          | 1.2 | 25        |
| 114 | Observers Design for a Class of Lipschitz Discrete-Time Systems with Time-Delay. , 2011, , .                                                                                                                           |     | 0         |
| 115 | Hâ^ž Unknown Input Observers Design for a Class of Nonlinear Time-Delay Systems. IFAC Postprint<br>Volumes IPPV / International Federation of Automatic Control, 2011, 44, 3879-3884.                                  | 0.4 | 4         |
| 116 | Observer synthesis method for Lipschitz nonlinear discrete-time systems with time-delay: An LMI approach. Applied Mathematics and Computation, 2011, 218, 419-429.                                                     | 1.4 | 36        |
| 117 | A sliding window filter for real-time attitude independent TAM calibration. , 2010, , .                                                                                                                                |     | 4         |
| 118 | Robust fault diagnosis for a class of nonlinear descriptor systems. , 2010, , .                                                                                                                                        |     | 1         |
| 119 | Nonlinear-Observer-Based \${cal H}_{infty}\$ Synchronization and Unknown Input Recovery. IEEE<br>Transactions on Circuits and Systems I: Regular Papers, 2009, 56, 1720-1731.                                          | 3.5 | 28        |
| 120 | A unified adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities. Systems and Control Letters, 2009, 58, 282-288.                                                   | 1.3 | 79        |
| 121 | Sobolev Norms-Based State Estimation and Input Recovery for a Class of Nonlinear Systems. Design and Experimental Results. IEEE Transactions on Signal Processing, 2009, 57, 1021-1029.                                | 3.2 | 14        |
| 122 | Observer Based Synchronization for a Class of Chaotic Time-Delay Systems. IFAC Postprint Volumes<br>IPPV / International Federation of Automatic Control, 2009, 42, 262-266.                                           | 0.4 | 0         |
| 123 | Observers for a class of Lipschitz systems with extension to performance analysis. Systems and Control Letters, 2008, 57, 18-27.                                                                                       | 1.3 | 243       |
| 124 | A software based approach for autonomous projectile attitude and position estimation. , 2008, , .                                                                                                                      |     | 3         |
| 125 | Observers Synthesis Method for a Class of Nonlinear Discrete-Time Systems with Extension to Observer-Based Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 9865-9870.  | 0.4 | 0         |
| 126 | Unknown Input Observer Synthesis Method with Modified Hâ^ž Criteria for Nonlinear Systems Using<br>Sobolev Norms. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41,<br>8588-8593. | 0.4 | 4         |

| #   | Article                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Observer design for a class of Lipschitz time-delay systems. International Journal of Modelling,<br>Identification and Control, 2008, 4, 28.                  | 0.2 | 7         |
| 128 | Observer Design for a Class of Nonlinear Time-Delay Systems. Proceedings of the American Control<br>Conference, 2007, , .                                     | 0.0 | 3         |
| 129 | On observers design for nonlinear time-delay systems. , 2006, , .                                                                                             |     | 14        |
| 130 | Observer Design for a Certain Class of Nonlinear Systems. , 2006, , .                                                                                         |     | 3         |
| 131 | Observer Design for Lipschitz Nonlinear Systems: The Discrete-Time Case. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2006, 53, 777-781. | 2.3 | 100       |
| 132 | Observer synthesis for Lipschitz discrete-time systems. , 0, , .                                                                                              |     | 17        |
| 133 | Observer Design for Nonlinear Systems: An Approach Based on the Differential Mean Value Theorem ,<br>0, , .                                                   |     | 62        |