
Stefan Vögele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5173906/publications.pdf Version: 2024-02-01

STEEAN VÃOCELE

#	Article	IF	CITATIONS
1	Vulnerability of US and European electricity supply to climate change. Nature Climate Change, 2012, 2, 676-681.	18.8	444
2	Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecological Economics, 2009, 68, 2031-2039.	5.7	166
3	Impacts of climate change on European critical infrastructures: The case of the power sector. Environmental Science and Policy, 2011, 14, 53-63.	4.9	120
4	Water constraints on European power supply under climate change: impacts on electricity prices. Environmental Research Letters, 2013, 8, 035010.	5.2	93
5	Context scenarios and their usage for the construction of socio-technical energy scenarios. Energy, 2016, 111, 956-970.	8.8	76
6	Integrated assessment of a phase-out of coal-fired power plants in Germany. Energy, 2017, 126, 285-305.	8.8	48
7	CCS: A future CO2 mitigation option for Germany?—A bottom-up approach. Energy Policy, 2007, 35, 2110-2120.	8.8	46
8	Short-term distributional consequences of climate change impacts on the power sector: who gains and who loses?. Climatic Change, 2013, 116, 191-206.	3.6	43
9	An analysis of the economic determinants of energy efficiency in the European iron and steel industry. Journal of Cleaner Production, 2015, 104, 250-263.	9.3	42
10	Extreme events defined—A conceptual discussion applying a complex systems approach. Futures, 2020, 115, 102490.	2.5	40
11	How clean is clean? Incremental versus radical technological change in coal-fired power plants. Journal of Evolutionary Economics, 2013, 23, 331-355.	1.7	36
12	Germany's "No―to carbon capture and storage: Just a question of lacking acceptance?. Applied Energy, 2018, 214, 205-218.	10.1	35
13	Socio-technical energy scenarios: state-of-the-art and CIB-based approaches. Climatic Change, 2020, 162, 1723-1741.	3.6	34
14	A Time Step Energy Process Model for Germany - Model Structure and Results. Energy Studies Review, 2014, 14, .	0.2	28
15	Do lead markets for clean coal technology follow market demand? A case study for China, Germany, Japan and the US. Environmental Innovation and Societal Transitions, 2014, 10, 42-58.	5.5	27
16	Transformation pathways of phasing out coal-fired power plants in Germany. Energy, Sustainability and Society, 2018, 8, .	3.8	27
17	Environmental analysis of a German strategy for carbon capture and storage of coal power plants. Energy Policy, 2010, 38, 7873-7883.	8.8	26
18	Trends in water demand and water availability for power plants—scenario analyses for the German capital Berlin. Climatic Change, 2012, 110, 879-899.	3.6	26

Stefan Vögele

#	Article	IF	CITATIONS
19	Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development. Applied Energy, 2020, 264, 114633.	10.1	26
20	Building scenarios for energy consumption of private households in Germany using a multi-level cross-impact balance approach. Energy, 2017, 120, 937-946.	8.8	25
21	The impact of climate change and variability on the generation of electrical power. Meteorologische Zeitschrift, 2015, 24, 173-188.	1.0	22
22	Hydro-climatic conditions and thermoelectric electricity generation – Part II: Model application to 17 nuclear power plants in Germany. Energy, 2014, 69, 700-707.	8.8	21
23	Hydro-climatic conditions and thermoelectric electricity generation – Part I: Development of models. Energy, 2013, 63, 42-51.	8.8	16
24	Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany. Climatic Change, 2020, 162, 1763-1778.	3.6	16
25	Environmental impacts of a German CCS strategy. Energy Procedia, 2009, 1, 3763-3770.	1.8	14
26	On the Future(s) of Energy Communities in the German Energy Transition: A Derivation of Transformation Pathways. Sustainability, 2022, 14, 3169.	3.2	14
27	E-mobility from a multi-actor point of view: Uncertainties and their impacts. Technological Forecasting and Social Change, 2021, 170, 120925.	11.6	13
28	Time and tide wait for no man pioneers and laggards in the deployment of CCS. Energy Conversion and Management, 2014, 83, 330-336.	9.2	12
29	Why the trend towards gas-guzzlers? A closer look at the complex effects of social norms on German car buyers. Energy Research and Social Science, 2021, 72, 101840.	6.4	12
30	Analyzing Brexit: Implications for the Electricity System of Great Britain. Energies, 2019, 12, 3212.	3.1	10
31	Decisions on investments in photovoltaics and carbon capture and storage: A comparison between two different greenhouse gas control strategies. Energy, 2013, 62, 385-392.	8.8	9
32	Security of Water Supply and Electricity Production: Aspects of Integrated Management. Water Resources Management, 2014, 28, 1767-1780.	3.9	9
33	Changing attitudes and conflicting arguments: Reviewing stakeholder communication on electricity technologies in Germany. Energy Research and Social Science, 2019, 55, 106-121.	6.4	9
34	Linking qualitative scenarios with quantitative energy models: knowledge integration in different methodological designs. Energy, Sustainability and Society, 2021, 11, .	3.8	9
35	Impacts of Climate Change on European Critical Infrastructures: The Case of the Power Sector. SSRN Electronic Journal, 0, , .	0.4	8
36	Effects of carbon dioxide capture and storage in Germany on European electricity exchange and welfare. Energy Policy, 2013, 59, 582-588.	8.8	8

Stefan Vögele

#	Article	IF	CITATIONS
37	Effects of a coal phase-out in Europe on reaching the UN Sustainable Development Goals. Environment, Development and Sustainability, 2023, 25, 879-916.	5.0	8
38	Economic disruptions in long-term energy scenarios – Implications for designing energy policy. Energy, 2020, 212, 118737.	8.8	7
39	The cost of phasing out nuclear power:. Energy Economics, 2002, 24, 469-490.	12.1	5
40	Analysis of the energy consumption of private households in Germany using multi-level cross-impact balance approach - Data. Data in Brief, 2017, 10, 515-517.	1.0	5
41	How to deal with non-linear pathways towards energy futures. TATuP - Zeitschrift Für TechnikfolgenabschÃæung in Theorie Und Praxis, 2019, 28, 20-26.	0.4	5
42	Analysing the water and land system impacts of Germany's future energy system. Renewable and Sustainable Energy Reviews, 2021, 150, 111469.	16.4	4
43	Dissemination of PV-Battery systems in the German residential sector up to 2050: Technological diffusion from multidisciplinary perspectives. Energy, 2022, 248, 123477.	8.8	4
44	A Hybrid IO Energy Model to Analyze CO2 Reduction Policies: A Case of Germany. Eco-efficiency in Industry and Science, 2009, , 337-356.	0.1	3
45	Comments on "Effects of Environmental Temperature Change on the Efficiency of Coal- and Natural Gas-Fired Power Plants― Environmental Science & Technology, 2017, 51, 5343-5344.	10.0	2
46	Cross-impact balance as an approach for the development of consistent storylines for the European energy market. , 2017, , .		2
47	Multi-criteria Approaches to Ancillary Effects: The Example of E-Mobility. Springer Climate, 2020, , 157-178.	0.6	2
48	Reduktion des gebĤderelevanten Energiebedarfs als Herausforderung für die Energiewende. Sechs Thesen zu unterschĤzten Barrieren und Potenzialen. , 2017, , 513-530.		2
49	Modeling thermoelectric power generation in view of climate change: a comment. Regional Environmental Change, 2011, 11, 207-209.	2.9	1
50	Economic Analysis of Carbon Capture in the Energy Sector. , 2015, , 147-171.		1
51	International Climate Policy and Economic Perspectives. , 2022, , 3559-3609.		1
52	Decisions on Investments in Photovoltaics and Carbon Capture and Storage: A Comparison between Two Different Greenhouse Gas Control Strategies. SSRN Electronic Journal, 0, , .	0.4	0
53	The future role of CO2-capture as part of a german mitigation strategy. , 2005, , 1613-1617.		0
54	Lead Markets for Clean Coal Technologies: A Case Study for China, Germany, Japan and the USA. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
55	Impact of Germany's Phase Out of Coal Power Plants on Developing Countries. , 2021, , 465-499.		О