Salvatore Pennisi

List of Publications by Citations

Source: https://exaly.com/author-pdf/5173657/salvatore-pennisi-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 168
 2,526
 27
 42

 papers
 citations
 h-index
 g-index

 210
 3,196
 2.4
 5.09

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
168	Advances in Reversed Nested Miller Compensation. <i>IEEE Transactions on Circuits and Systems Part 1:</i> Regular Papers, 2007 , 54, 1459-1470		113
167	Design methodology and advances in nested-Miller compensation. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2002 , 49, 893-903		96
166	Design guidelines for reversed nested Miller compensation in three-stage amplifiers. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2003 , 50, 227-233		84
165	0.7-V Three-Stage Class-AB CMOS Operational Transconductance Amplifier. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2016 , 63, 1807-1815	3.9	66
164	Design Procedures for Three-Stage CMOS OTAs With Nested-Miller Compensation. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2007 , 54, 933-940		66
163	Improved Reversed Nested Miller Frequency Compensation Technique With Voltage Buffer and Resistor. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2007 , 54, 382-386		64
162	Analytical comparison of frequency compensation techniques in three-stage amplifiers. <i>International Journal of Circuit Theory and Applications</i> , 2008 , 36, 53-80	2	63
161	CMOS Current Amplifiers 1999 ,		61
160	Three-Stage CMOS OTA for Large Capacitive Loads With Efficient Frequency Compensation Scheme. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2006 , 53, 1044-1048		60
159	Design Procedure for Two-Stage CMOS Transconductance Operational Amplifiers: A Tutorial. <i>Analog Integrated Circuits and Signal Processing</i> , 2001 , 27, 177-187	1.2	59
158	Current-feedback amplifiers versus voltage operational amplifiers. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2001 , 48, 617-623		57
157	High-frequency harmonic distortion in feedback amplifiers: analysis and applications. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2003 , 50, 328-340		49
156	Autonomous Energy-Efficient Wireless Sensor Network Platform for Home/Office Automation. <i>IEEE Sensors Journal</i> , 2019 , 19, 3501-3512	4	48
155	Design Methodology of Subthreshold Three-Stage CMOS OTAs Suitable for Ultra-Low-Power Low-Area and High Driving Capability. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2015 , 62, 1453-1462	3.9	47
154	Liquid Crystal Display Drivers 2009,		47
153	A schmitt trigger by means of a ccii+. <i>International Journal of Circuit Theory and Applications</i> , 1995 , 23, 161-165	2	45
152	Analytical comparison of reversed nested Miller frequency compensation techniques. <i>International Journal of Circuit Theory and Applications</i> , 2010 , 38, 709-737	2	42

(1998-2015)

151	High-Performance Four-Stage CMOS OTA Suitable for Large Capacitive Loads. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2015 , 62, 2476-2484	3.9	41	
150	Distortion analysis of Miller-compensated three-stage amplifiers. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2006 , 53, 961-976		35	
149	Optimized Active Single-Miller Capacitor Compensation With Inner Half-Feedforward Stage for Very High-Load Three-Stage OTAs. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2016 , 63, 1349-1359	3.9	32	
148	0.9-V Class-AB Miller OTA in 0.35- \$mu text{m}\$ CMOS With Threshold-Lowered Non-Tailed Differential Pair. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2017 , 64, 1740-1747	3.9	31	
147	1.5-V CMOS CCII+ with high current-driving capability. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2003 , 50, 187-190		31	
146	88-\$mu\$ A 1-MHz Stray-Insensitive CMOS Current-Mode Interface IC for Differential Capacitive Sensors. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2014 , 61, 1905-1916	3.9	29	
145	Exploiting the Body of MOS Devices for High Performance Analog Design. <i>IEEE Circuits and Systems Magazine</i> , 2011 , 11, 8-23	3.2	29	
144	Linearization Technique for Source-Degenerated CMOS Differential Transconductors. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2007 , 54, 848-852		28	
143	Design methodology of Miller frequency compensation with current buffer/amplifier. <i>IET Circuits, Devices and Systems</i> , 2008 , 2, 227	1.1	27	
142	Dynamic biasing for true low-voltage CMOS class AB current-mode circuits. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2000 , 47, 1569-1575		27	
141	High-drive CMOS current amplifier. IEEE Journal of Solid-State Circuits, 1998, 33, 228-236	5.5	27	
140	High linearity CMOS current output stage. <i>Electronics Letters</i> , 1995 , 31, 789-790	1.1	27	
139	Single Miller capacitor frequency compensation with nulling resistor for three-stage amplifiers. <i>International Journal of Circuit Theory and Applications</i> , 2008 , 36, 825-837	2	26	
138	Low-voltage high-drive CMOS current feedback op-amp. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2005 , 52, 317-321		26	
137	0.9-V CMOS cascode amplifier with body-driven gain boosting. <i>International Journal of Circuit Theory and Applications</i> , 2009 , 37, 193-202	2	25	
136	Design Solutions for Sample-and-Hold Circuits in CMOS Nanometer Technologies. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2009 , 56, 459-463	3.5	24	
135	Comparison of the Frequency Compensation Techniques for CMOS Two-Stage Miller OTAs. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2008 , 55, 1099-1103	3.5	24	
134	Harmonic distortion on class AB CMOS current output stages. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 1998 , 45, 243-250		24	

133	Effects of nonlinear feedback in the frequency domain. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2006 , 53, 225-234		22
132	A low-voltage design approach for class AB current-mode circuits. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2002 , 49, 273-279		22
131	Design Strategies for Class A CMOS CCIIS. Analog Integrated Circuits and Signal Processing, 1999 , 19, 75	j-8 <u>5</u> 2	22
130	High-Performance Three-Stage Single-Miller CMOS OTA With No Upper Limit of \${C}_{L}\$. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2018 , 65, 1529-1533	3.5	21
129	High-performance and simple CMOS interface circuit for differential capacitive sensors. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2005 , 52, 327-330		21
128	CMOS multiplier for grounded capacitors. <i>Electronics Letters</i> , 2002 , 38, 765	1.1	21
127	Performance evaluation of a multistring photovoltaic module with distributed DCDC converters. <i>IET Renewable Power Generation</i> , 2015 , 9, 935-942	2.9	20
126	A New Compact Low-Power High-Speed Rail-to-Rail Class-B Buffer for LCD Applications. <i>Journal of Display Technology</i> , 2010 , 6, 184-190		20
125	Accurate estimation of high-frequency harmonic distortion in two-stage Miller OTAs. <i>IET Circuits, Devices and Systems,</i> 2005 , 152, 417		20
124	Biasing technique via bulk terminal for minimum supply CMOS amplifiers. <i>Electronics Letters</i> , 2005 , 41, 779	1.1	20
123	4-Phase Interleaved Boost Converter With IC Controller for Distributed Photovoltaic Systems. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2013 , 60, 3090-3102	3.9	19
122	Active capacitance multipliers using current conveyors		19
121	Self-Biased Dual-Path Push-Pull Output Buffer Amplifier for LCD Column Drivers. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2014 , 61, 663-670	3.9	18
120	Analysis and Implementation of a Minimum-Supply Body-Biased CMOS Differential Amplifier Cell. <i>IEEE Transactions on Very Large Scale Integration (VLSI) Systems</i> , 2009 , 17, 172-180	2.6	18
119	Two CMOS Current Feedback Operational Amplifiers. <i>IEEE Transactions on Circuits and Systems II:</i> Express Briefs, 2007 , 54, 944-948	3.5	17
118	A 2.5-GHz DDFS-PLL With 1.8-MHz Bandwidth in 0.35-\$mu\$m CMOS. <i>IEEE Journal of Solid-State Circuits</i> , 2008 , 43, 1403-1413	5.5	16
117	Modelling of source-coupled logic gates. <i>International Journal of Circuit Theory and Applications</i> , 2002 , 30, 459-477	2	16
116	Switched-Capacitor Power Management Integrated Circuit for Autonomous Internet of Things Node. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2018 , 65, 1455-1459	3.5	15

115	Avoiding the Gain-Bandwidth Trade Off in Feedback Amplifiers. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2011 , 58, 2108-2113	3.9	15	
114	Low-Power Cool Bypass Switch for Hot Spot Prevention in Photovoltaic Panels. <i>ETRI Journal</i> , 2011 , 33, 880-886	1.4	15	
113	Active reversed nested Miller compensation for three-stage amplifiers		15	
112	Sub-Femto-Farad Resolution Electronic Interfaces for Integrated Capacitive Sensors: A Review. <i>IEEE Access</i> , 2020 , 8, 153969-153980	3.5	15	
111	A rail-to-rail constant-gm CCII for Instrumentation Amplifier applications. <i>AEU - International Journal of Electronics and Communications</i> , 2018 , 91, 103-109	2.8	14	
110	Micro-scale inductorless maximum power point tracking DC D C converter. <i>IET Power Electronics</i> , 2013 , 6, 1634-1639	2.2	14	
109	An approach to model high-frequency distortion in negative-feedback amplifiers. <i>International Journal of Circuit Theory and Applications</i> , 2008 , 36, 3-18	2	14	
108	Symbolic factorization methodology for multistage amplifier transfer functions. <i>International Journal of Circuit Theory and Applications</i> , 2016 , 44, 38-59	2	12	
107	Low-Power Class-AB CMOS Voltage Feedback Current Operational Amplifier With Tunable Gain and Bandwidth. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2014 , 61, 574-578	3.5	12	
106	Analog Path for Triple Band WCDMA Polar Modulated Transmitter in 90nm CMOS. <i>Radio Frequency Integrated Circuits (RFIC) Symposium, IEEE</i> , 2007 ,		12	
105	Solutions for CMOS current amplifiers with high-drive output stages. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2000 , 47, 988-998		12	
104	0.6-V CMOS cascode OTA with complementary gate-driven gain-boosting and forward body bias. <i>International Journal of Circuit Theory and Applications</i> , 2020 , 48, 15-27	2	12	
103	Improved single-miller passive compensation network for three-stage CMOS OTAs. <i>Analog Integrated Circuits and Signal Processing</i> , 2016 , 86, 417-427	1.2	11	
102	High-performance CMOS pseudo-differential amplifier		11	
101	High-CMRR Current Amplifier Architecture and Its CMOS Implementation. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2006 , 53, 1118-1122		11	
100	Pseudorandom bit generator based on dynamic linear feedback topology. <i>Electronics Letters</i> , 2002 , 38, 1097	1.1	11	
99	High-performance and simple CMOS unity-gain amplifier. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2000 , 47, 406-410		11	
98	Low-voltage class AB CMOS current output stage. <i>Electronics Letters</i> , 1999 , 35, 1329	1.1	11	

97	Step-response optimisation techniques for low-power, high-load, three-stage operational amplifiers driving large capacitive loads. <i>IET Circuits, Devices and Systems</i> , 2010 , 4, 87	1.1	10
96	CMOS High-CMRR Current Output Stages. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2007 , 54, 745-749		10
95	Low-voltage CMOS current amplifier and its use for high-performance voltage amplification. <i>IET Circuits, Devices and Systems</i> , 2003 , 150, 205		10
94	The Universal Circuit Simulator: A Mixed-Signal Approach to \$n\$-Port Network and Impedance Synthesis. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2007 , 54, 2178-2183	3.9	9
93	Reversed Double Pole-Zero Cancellation Frequency Compensation Technique for Three-Stage Amplific	ers	9
92	A novel pseudo random bit generator for cryptography applications		9
91	Resolution of a current-mode algorithmic analog-to-digital converter. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2002 , 49, 1480-1486		9
90	A low-voltage CMOS 1-Hz low-pass filter		9
89	Dual Push P ull High-Speed Rail-to-Rail CMOS Buffer Amplifier for Flat-Panel Displays. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2018 , 65, 1879-1883	3.5	8
88	Miller Theorem for Weakly Nonlinear Feedback Circuits and Application to CE Amplifier. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2008 , 55, 991-995	3.5	8
87	Nonidealities of Tow-Thomas biquads Using VOA- and CFOA-based Miller integrators. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2005 , 52, 22-27		8
86	High-speed CMOS unity-gain current amplifier. <i>Microelectronics Journal</i> , 2006 , 37, 1086-1091	1.8	8
85	A high-performance CMOS CCII. International Journal of Circuit Theory and Applications, 2001, 29, 331-3	33 <u>6</u>	8
84	High accuracy CMOS capacitance multiplier		8
83	High-tuning-range CMOS band-pass IF filter based on a low-Q cascaded biquad optimization technique. <i>International Journal of Circuit Theory and Applications</i> , 2015 , 43, 1615-1636	2	7
82	High-performance frequency compensation topology for four-stage OTAs 2014,		7
81	2011,		7
80	IMPROVED LOW-POWER HIGH-SPEED BUFFER AMPLIFIER WITH SLEW-RATE ENHANCEMENT FOR LCD APPLICATIONS. <i>Journal of Circuits, Systems and Computers</i> , 2010 , 19, 325-334	0.9	7

(2017-2009)

79	Approach to analyse and design nearly sinusoidal oscillators. <i>IET Circuits, Devices and Systems</i> , 2009 , 3, 204-221	1.1	7	
78	Low-voltage dynamic biasing technique for CMOS class AB current-mode circuits. <i>Electronics Letters</i> , 2000 , 36, 114	1.1	7	
77	Active load with cross-coupled bulk for high-gain high-CMRR nanometer CMOS differential stages. <i>International Journal of Circuit Theory and Applications</i> , 2019 , 47, 1700-1704	2	6	
76	Low-power high-speed rail-to-rail LCD output buffer with dual-path push pull operation and quiescent current control. <i>Analog Integrated Circuits and Signal Processing</i> , 2010 , 65, 289-298	1.2	6	
75	Wien-Type Oscillators: Evaluation and Optimization of Harmonic Distortion. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2008 , 55, 628-632	3.5	6	
74	Sub-1V CMOS OTA with Body-driven Gain Boosting 2007 ,		6	
73	High-Drive and Linear CMOS Class-AB Pseudo-Differential Amplifier. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2007 , 54, 112-116		6	
72	A CMOS operational floating conveyor		6	
71	Dovetail Tip: A New Approach for Low-Threshold Vacuum Nanoelectronics. <i>IEEE Transactions on Electron Devices</i> , 2015 , 62, 4293-4300	2.9	5	
70	CMOS current-steering DAC architectures based on the triple-tail cell. <i>International Journal of Circuit Theory and Applications</i> , 2008 , 36, 233-246	2	5	
69	High-CMRR CMOS current output stage. <i>Electronics Letters</i> , 2003 , 39, 945	1.1	5	
68	Harmonic distortion in three-stage nested-Miller-compensated amplifiers		5	
67	Reversed nested Miller compensation with current follower		5	
66	Harmonic distortion in single-stage amplifiers		5	
65	Ultra-Low Power Amplifiers for IoT Nodes 2018 ,		5	
64	0.5 V CMOS Inverter-Based Transconductance Amplifier with Quiescent Current Control. <i>Journal of Low Power Electronics and Applications</i> , 2021 , 11, 37	1.7	5	
63	Class-AB CMOS output stages suitable for low-voltage amplifiers in nanometer technologies. <i>Microelectronics Journal</i> , 2019 , 92, 104597	1.8	4	
62	The noise performance of CMOS Miller operational transconductance amplifiers with embedded current-buffer frequency compensation. <i>International Journal of Circuit Theory and Applications</i> , 2017 , 45, 457-465	2	4	

61	670-nA CMOS OTA FOR AMLCD COLUMN DRIVER. <i>Journal of Circuits, Systems and Computers</i> , 2009 , 18, 339-350	0.9	4
60	An efficient RNM compensation topology with voltage buffer and nulling resistors for large-capacitive-load three-stage OTAs 2009 ,		4
59	A novel CMOS current-mode power amplifier		4
58	Unity-Gain Amplifier With Theoretically Zero Gain Error. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2008 , 57, 1431-1437	5.2	4
57	Single Miller capacitor frequency compensation with nulling resistor for three-stage amplifiers 2007 ,		4
56	CMOS single-input differential-output amplifier cells. <i>IET Circuits, Devices and Systems</i> , 2003 , 150, 194		4
55	High-performance CMOS current feedback operational amplifier		4
54	A new design approach for variable-gain low noise amplifiers		4
53	CMOS Non-tailed differential pair. International Journal of Circuit Theory and Applications, 2016, 44, 146	58 <u>≥</u> 147	7 4
52	Adaptive frequency compensation for maximum and constant bandwidth feedback amplifiers. International Journal of Circuit Theory and Applications, 2013, 41, 424-440	2	3
51	Constant and maximum bandwidth feedback amplifier with adaptive frequency compensation 2012		3
50	Harmonic distortion in non-linear amplifier with non-linear feedback. <i>International Journal of Circuit Theory and Applications</i> , 1998 , 26, 293-299	2	3
49	Robust three-state PFD architecture with enhanced frequency acquisition capabilities		3
48	Effect of CFOA nonidealities in Miller integrator cells. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2004 , 51, 249-253		3
47	Reversed nested Miller compensation with voltage follower		3
46	High-Frequency Low-Current Second-Order Bandpass Active Filter Topology and Its Design in 28-nm FD-SOI CMOS. <i>Journal of Low Power Electronics and Applications</i> , 2020 , 10, 27	1.7	3
45	A Biasing Approach to Design Ultra-Low-Power Standard-Cell-Based Analog Building Blocks for Nanometer SoCs. <i>IEEE Access</i> , 2022 , 10, 25892-25900	3.5	3
44	A new advanced RNMC technique with dual-active current and voltage buffers for low-power high-load three-stage amplifiers 2009 ,		2

(2011-2009)

43	Step-response optimization techniques for low-power three-stage operational amplifiers for large capacitive load applications 2009 ,		2
42	A high-speed low-power output buffer amplifier for large-size LCD applications 2009,		2
41	Analysis and evaluation of harmonic distortion in the tunnel diode oscillator		2
40	CMOS Miller OTA with Body-Biased Output Stage 2007,		2
39	Distortion analysis of three-stage amplifiers with reversed nested-Miller compensation		2
38	Analysis of Harmonic Distortion in the Colpitts Oscillator 2006,		2
37	Current output stage with improved CMRR		2
36	CMOS single-to-differential current amplifier		2
35	Well-defined design procedure for a three-stage CMOS OTA		2
34	Feedback amplifiers: a simplified analysis of harmonic distortion in the frequency domain		2
33	Hybrid nested Miller compensation with nulling resistors		2
32	A versatile CMOS fully differential current amplifier		2
31	A Novel Approach to EDecay: PANDORA, a New Experimental Setup for Future In-Plasma Measurements. <i>Universe</i> , 2022 , 8, 80	2.5	2
30	A new accurate analytical expression for the SiPM transient response to single photons 2014,		1
29	Optimized frequency compensation topology for low-power three-stage OTAs 2013,		1
28	Analytical figure of merit evaluation of RNMC networks for low-power three-stage OTAs 2010,		1
27	A 28mW WCDMA/GSM/GPRS/EDGE transformer-based receiver in 45nm CMOS 2010 ,		1
26	Self-biased dual-path push-pull output buffer amplifier topology for LCD driver applications 2011 ,		1

25	2011,		1
24	Reply to "Comments on Avoiding the Gain-Bandwidth Trade Off in Feedback Amplifiers". <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2011 , 58, 2117-2117	3.9	1
23	Autotuning technique for CMOS current mode capacitive sensor interfaces 2012,		1
22	Distortion analysis in the frequency domain of a Gm-C biquad 2007 ,		1
21	Miller Compensation: Optimization with Current Buffer/Amplifier 2007,		1
20	Low quiescent current high speed amplifier for LCD column driver 2007 ,		1
19	Very Low Voltage CMOS Two-stage Amplifier 2007 ,		1
18	Inverting closed-loop amplifier architecture with reduced gain error and high input impedance		1
17	CMOS class AB single-to-differential transconductor		1
16	New analytical approach to evaluate harmonic distortion in nonlinear feedback amplifiers		1
15	Comparison between Miller integrator cells using VOAs and CFOAs		1
14	Current-mode A/D fuzzy converter. <i>IEEE Transactions on Fuzzy Systems</i> , 2002 , 10, 533-540	8.3	1
13	Analysis of the noise characteristics of current-feedback operational amplifier. <i>Microelectronics Reliability</i> , 2000 , 40, 321-327	1.2	1
12	High-drive CMOS current-feedback opamp		1
11	Filter circuits synthesis with CFOA-based differentiators		1
10	High-frequency CMOS amplifier with improved bandwidth performance. <i>Electronics Letters</i> , 1999 , 35, 1126	1.1	1
9	A class AB CMOS current mirror with low-voltage capability		1
8	Single miller capacitor frequency compensation techniques: Theoretical comparison and critical review. <i>International Journal of Circuit Theory and Applications</i> ,	2	1

7	Low-Drive Current Amplifiers 1999 , 45-106		1
6	A 0.5 V Sub-Threshold CMOS Current-Controlled Ring Oscillator for IoT and Implantable Devices. Journal of Low Power Electronics and Applications, 2022 , 12, 16	1.7	1
5	High-speed voltage buffers for the experimental characterization of CMOS transconductance operational amplifiers. <i>IEEE Transactions on Instrumentation and Measurement</i> , 1999 , 48, 31-33	5.2	0
4	IMPROVED POWER-EFFICIENT RNMC TECHNIQUE WITH VOLTAGE BUFFER AND NULLING RESISTORS FOR LOW-POWER HIGH-LOAD THREE-STAGE AMPLIFIERS. <i>Journal of Circuits, Systems and Computers</i> , 2009 , 18, 1321-1331	0.9	
3	High-Drive Current Amplifiers 1999 , 107-158		
2	Drivers for Active-Matrix LCDs 2009 , 189-235		
1	Two-Stage OTA with all Subthreshold MOSFETs and Optimum GBW to DC-Current Ratio. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2022 , 1-1	3.5	