Xingjie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5173433/publications.pdf

Version: 2024-02-01

		201674	214800
51	2,771 citations	27	47
papers	citations	h-index	g-index
56	56	56	2827
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	12.6	429
2	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	38.1	367
3	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	13.7	158
4	Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical Science, 2019, 10, 1186-1192.	7.4	129
5	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. Journal of the American Chemical Society, 2019, 141, 8306-8314.	13.7	112
6	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 7682-7686.	13.8	103
7	Fiber Composites of Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 7120-7140.	6.7	82
8	Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 4166-4172.	6.7	80
9	Uncovering the Role of Metal–Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. Chemistry of Materials, 2020, 32, 4609-4617.	6.7	70
10	Phase Transitions in Metal–Organic Frameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ X-ray Diffraction. Journal of the American Chemical Society, 2020, 142, 4609-4615.	13.7	69
11	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm, 2019, 21, 2409-2415.	2.6	67
12	Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. Journal of the American Chemical Society, 2021, 143, 16777-16785.	13.7	64
13	Zirconium-Based Metal–Organic Framework with 9-Connected Nodes for Ammonia Capture. ACS Applied Nano Materials, 2019, 2, 6098-6102.	5.0	59
14	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	13.7	58
15	Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catalysis, 2021, 1, 721-733.	6.1	49
16	Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst. Journal of the American Chemical Society, 2021, 143, 4302-4310.	13.7	48
17	Separation of Aromatic Hydrocarbons in Porous Materials. Journal of the American Chemical Society, 2022, 144, 12212-12218.	13.7	47
18	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Ďerived Levulinic Acid. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32090-32096.	8.0	44

#	Article	IF	Citations
19	Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2020, 10, 8995-9005.	11.2	40
20	Facile synthesis of ultramicroporous carbon adsorbents with ultraâ€high <scp>CH₄</scp> uptake by in situ ionic activation. AICHE Journal, 2020, 66, e16231.	3.6	39
21	Stabilization of an Unprecedented Hexanuclear Secondary Building Unit in a Thorium-Based Metal–Organic Framework. Inorganic Chemistry, 2019, 58, 3586-3590.	4.0	38
22	Benign Integration of a Zn-Azolate Metal–Organic Framework onto Textile Fiber for Ammonia Capture. ACS Applied Materials & Interfaces, 2020, 12, 47747-47753.	8.0	37
23	Assembly of a Porous Supramolecular Polyknot from Rigid Trigonal Prismatic Building Blocks. Journal of the American Chemical Society, 2019, 141, 12998-13002.	13.7	36
24	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	6.8	36
25	Photocatalytic Biocidal Coatings Featuring Zr ₆ Ti ₄ -Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 12192-12201.	13.7	35
26	Synthetic Control of Thorium Polyoxo-Clusters in Metal–Organic Frameworks toward New Thorium-Based Materials. ACS Applied Nano Materials, 2019, 2, 2260-2265.	5.0	34
27	Water-Based Synthesis of a Stable Iron-Based Metal–Organic Framework for Capturing Toxic Gases. , 2020, 2, 1129-1134.		33
28	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO 2. Angewandte Chemie, 2019, 131, 7764-7768.	2.0	31
29	Tuning the Structural Flexibility for Multi-Responsive Gas Sorption in Isonicotinate-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16820-16827.	8.0	31
30	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
31	Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.	13.7	28
32	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
33	Organic Counteranion Co-assembly Strategy for the Formation of \hat{I}^3 -Cyclodextrin-Containing Hybrid Frameworks. Journal of the American Chemical Society, 2020, 142, 2042-2050.	13.7	26
34	Reticular exploration of uranium-based metalâ€"organic frameworks with hexacarboxylate building units. Nano Research, 2021, 14, 376-380.	10.4	25
35	Modulating Chemical Environments of Metal–Organic Framework-Supported Molybdenum(VI) Catalysts for Insights into the Structure–Activity Relationship in Cyclohexene Epoxidation. Journal of the American Chemical Society, 2022, 144, 3554-3563.	13.7	25
36	Green Synthesis of a Functionalized Zirconium-Based Metal–Organic Framework for Water and Ethanol Adsorption. Inorganics, 2019, 7, 56.	2.7	24

#	Article	IF	CITATIONS
37	Nanoporous Water-Stable Zr-Based Metal–Organic Frameworks for Water Adsorption. ACS Applied Nano Materials, 2021, 4, 4346-4350.	5.0	22
38	Heterometallic Ce $\langle \sup V \langle \sup \rangle V \langle \sup \rangle V \langle \sup \rangle$ Oxo Clusters with Adjustable Catalytic Reactivities. Journal of the American Chemical Society, 2021, 143, 21056-21065.	13.7	21
39	Investigating the Influence of Hexanuclear Clusters in Isostructural Metal–Organic Frameworks on Toxic Gas Adsorption. ACS Applied Materials & Interfaces, 2022, 14, 3048-3056.	8.0	18
40	Modular Synthesis of Highly Porous Zr-MOFs Assembled from Simple Building Blocks for Oxygen Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42179-42185.	8.0	17
41	A Catalytically Accessible Polyoxometalate in a Porous Fiber for Degradation of a Mustard Gas Simulant. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16687-16693.	8.0	14
42	Benign Synthesis and Modification of a Zn–Azolate Metal–Organic Framework for Enhanced Ammonia Uptake and Catalytic Hydrolysis of an Organophosphorus Chemical. , 2021, 3, 1363-1368.		13
43	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied Materials & Discrete Remains and Provided Remains and	8.0	11
44	Discovery of spontaneous de-interpenetration through charged point-point repulsions. CheM, 2022, 8, 225-242.	11.7	11
45	Rapid Generation of Metal–Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 6674-6680.	13.7	10
46	A cobaltâ€based metal–organic framework for efficient separation of propene from propane via electrostatic effect. AICHE Journal, 2022, 68, .	3.6	6
47	Mechanistic Investigation of Enhanced Catalytic Selectivity toward Alcohol Oxidation with Ce Oxysulfate Clusters. Journal of the American Chemical Society, 2022, 144, 12092-12101.	13.7	6
48	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie, 2022, 134, .	2.0	4
49	Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks. CrystEngComm, 2022, 24, 5135-5140.	2.6	4
50	Interfacial Unit-Dependent Catalytic Activity for CO Oxidation over Cerium Oxysulfate Cluster Assemblies. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33515-33524.	8.0	2
51	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie, 0, , .	2.0	0