Zhiyuan Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/517343/publications.pdf

Version: 2024-02-01

76196 102304 5,182 139 40 66 citations h-index g-index papers 141 141 141 5666 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient Skyâ€Blue Lightâ€Emitting Diodes Based on Oriented Perovskite Nanoplates. Advanced Optical Materials, 2022, 10, 2101525.	3.6	12
2	Efficient semi-transparent organic solar cells enabled by a quasi-heterojunction active layer structure. Journal of Materials Chemistry C, 2022, 10, 3720-3728.	2.7	8
3	Solid solution effect boosts the photovoltaic performance of PCDTBT-based organic solar cells. Organic Electronics, 2022, 104, 106489.	1.4	1
4	Inert polymer modification of an exciplex emitter enhances the light-emitting efficiency and reduces the efficiency roll-off of solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 8459-8465.	2.7	2
5	A polymer acceptor containing a B ↕N unit with strong fluorescence for organic photovoltaics. Journal of Materials Chemistry C, 2022, 10, 10860-10865.	2.7	8
6	Non-Halogenated Solvents and Layer-by-Layer Blade-Coated Ternary Organic Solar Cells via Cascade Acceptor Adjusting Morphology and Crystallization to Reduce Energy Loss. ACS Applied Materials & amp; Interfaces, 2022, 14, 31054-31065.	4.0	15
7	MEA surface passivation of a AgNWs:SnO ₂ composite transparent electrode enables efficient flexible ITO-free polymer solar cells. Journal of Materials Chemistry C, 2021, 9, 9914-9921.	2.7	10
8	Synthesis, characterization, and optoelectronic properties of phenothiazine-based organic co-poly-ynes. New Journal of Chemistry, 2021, 45, 15082-15095.	1.4	3
9	Effective defect passivation of CsPbBr ₃ quantum dots using gallium cations toward the fabrication of bright perovskite LEDs. Journal of Materials Chemistry C, 2021, 9, 11324-11330.	2.7	11
10	Additive and High-Temperature Processing Boost the Photovoltaic Performance of Nonfullerene Organic Solar Cells Fabricated with Blade Coating and Nonhalogenated Solvents. ACS Applied Materials & Solvents.	4.0	44
11	Backboneâ€Acceptor/Pendantâ€Donor Strategy for Efficient Thermally Activated Delayed Fluorescence Conjugated Polymers with External Quantum Efficiency Close to 25% and Emission Peak at 608Ânm. Advanced Optical Materials, 2021, 9, 2001981.	3.6	19
12	Carbazole ring: A delicate rack for constructing thermally activated delayed fluorescent compounds with through-space charge transfer. Chinese Chemical Letters, 2021, 32, 4011-4014.	4.8	4
13	Semi-transparent organic solar cells with high visible transmission enabled by a transparent wide-bandgap donor. Organic Electronics, 2021, 93, 106140.	1.4	7
14	Supercapacitor electrodes based on metalâ€organic compounds from the first transition metal series. EcoMat, 2021, 3, e12106.	6.8	38
15	N–B ↕N Bridged Bithiophene: A Building Block with Reduced Band Gap to Design n-Type Conjugated Polymers. Macromolecules, 2021, 54, 6718-6725.	2.2	17
16	H2O treatment-induced uniform NiOX interfacial layer boosting brightness and light-emitting efficiency of blue perovskite electroluminescence. Organic Electronics, 2021, 98, 106299.	1.4	3
17	One-step solution-processed low surface roughness silver nanowire composite transparent electrode for efficient flexible indium tin oxide-free polymer solar cells. Thin Solid Films, 2021, 718, 138486.	0.8	14
18	Efficient ternary polymer solar cell using wide bandgap conjugated polymer donor with two nonâ€fullerene small molecule acceptors enabled power conversion efficiency of 16% with low energy loss of 0.47 eV. Nano Select, 2021, 2, 1326-1335.	1.9	2

#	Article	IF	Citations
19	Face-on orientation and vertical phase separation of p-DTS(FBTTh2)2/PC70BM induced by epitaxial crystallization of polymer interface layer. Organic Electronics, 2020, 77, 105512.	1.4	1
20	Synthesis and Photovoltaic Investigation of 8,10-Bis(2-octyldodecyl)-8,10-dihydro-9 <i>H < /i> -bisthieno [2â\in2,3â\in2:7,8;3â\in3,2â\in3:5,6] naphtho [2,3-<i>d</i> - imidazol-9-one Based Conjugated Polymers Using a Nonfullerene Acceptor. ACS Applied Energy Materials, 2020, 3, 495-505.</i>	2.5	10
21	Synthesis and Characterization of a Large-Sized π-Conjugated Copper(II) Complex Nanosheet. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 254-258.	1.9	9
22	Impacts of a second acceptor on the energy loss, blend morphology and carrier dynamics in non-fullerene ternary polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 11727-11734.	2.7	5
23	Rigidity and Polymerization Amplified Red Thermally Activated Delayed Fluorescence Polymers for Constructing Red and Singleâ€Emissiveâ€Layer White OLEDs. Advanced Functional Materials, 2020, 30, 2002493.	7.8	51
24	Effects of 1,8-diiodooctane on ultrafast charge carrier dynamics and photovoltaic performance in organic solar cells: A comparison of PC71BM and nonfullerene acceptor IT-M. Organic Electronics, 2020, 81, 105690.	1.4	3
25	Synthesis and Photovoltaic Properties of New Conjugated Dâ€A Polymers Based on the Same Fluoroâ€Benzothiadiazole Acceptor Unit and Different Donor Units. ChemistrySelect, 2020, 5, 853-863.	0.7	6
26	Bright and Color-Stable Blue-Light-Emitting Diodes based on Three-Dimensional Perovskite Polycrystalline Films via Morphology and Interface Engineering. Journal of Physical Chemistry Letters, 2020, 11, 1411-1418.	2.1	36
27	Ultrafast spectroscopic investigation of the effect of solvent additives on charge photogeneration and recombination dynamics in non-fullerene organic photovoltaic blends. Journal of Materials Chemistry C, 2020, 8, 6724-6733.	2.7	11
28	Rotation-restricted thermally activated delayed fluorescence compounds for efficient solution-processed OLEDs with EQEs of up to 24.3% and small roll-off. Chemical Communications, 2020, 56, 5957-5960.	2.2	51
29	Efficient Nonhalogenated Solvent-Processed Ternary All-Polymer Solar Cells with a Favorable Morphology Enabled by Two Well-Compatible Donors. ACS Applied Materials & Enterfaces, 2019, 11, 32200-32208.	4.0	32
30	High-efficiency ternary nonfullerene organic solar cells fabricated with a near infrared acceptor enhancing exciton utilization and extending absorption. Journal of Materials Chemistry C, 2019, 7, 10498-10506.	2.7	23
31	Highly efficient organic light-emitting diodes employing the periodic micro-structured ITO substrate fabricated by holographic lithography. Organic Electronics, 2019, 75, 105438.	1.4	9
32	Optimizing domain size and phase purity in all-polymer solar cells by solution ordered aggregation and confinement effect of the acceptor. Journal of Materials Chemistry C, 2019, 7, 12560-12571.	2.7	42
33	Separating Crystallization Process of P3HT and Oâ€IDTBR to Construct Highly Crystalline Interpenetrating Network with Optimized Vertical Phase Separation. Advanced Functional Materials, 2019, 29, 1807591.	7.8	82
34	Conjugated random terpolymers based on benzodithiophene, diketopyrrolopyrrole, and 8,10â€bis(thiophenâ€2â€yl)â€2,5â€di(nonadecanâ€3â€yl)bis[1,3]thiazolo[4,5â€∙f :5′,4′―h]thieno[3,4 Efficient Polymer Solar Cell. Journal of Polymer Science Part A, 2019, 57, 1478-1485.	1â €•b₂] aquin	oxatine for
35	Recent Applications of Interfacial Exciplex as Ideal Host of Power-Efficient OLEDs. Frontiers in Chemistry, 2019, 7, 306.	1.8	22
36	Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr ₃ perovskite films. Journal of Materials Chemistry C, 2019, 7, 5596-5603.	2.7	47

#	Article	IF	Citations
37	Managing intramolecular energy transfer in well-defined polyfluorenes grafting one/two orange emissive groups on central or terminal fluorene unit. Polymer, 2019, 168, 36-43.	1.8	0
38	Wide bandgap donor-acceptor conjugated polymers with alkylthiophene as side chains for high-performance non-fullerene polymer solar cells. Organic Electronics, 2019, 65, 31-38.	1.4	8
39	Insight into correlation between molecular length and exciton dissociation, charge transport and recombination in Polymer: Oligomer based solar cells. Organic Electronics, 2018, 58, 75-81.	1.4	5
40	Highly Efficient TADF Polymer Electroluminescence with Reduced Efficiency Roll-off via Interfacial Exciplex Host Strategy. ACS Applied Materials & Interfaces, 2018, 10, 47-52.	4.0	48
41	The application of a high boiling point dissolution solvent on a poly(<i>N</i> -vinylcarbazole) host toward improving the performance of blue electrophosphorescent devices <i>via</i> a solution process. Journal of Materials Chemistry C, 2018, 6, 4427-4434.	2.7	8
42	Power-efficient and solution-processed red phosphorescent organic light-emitting diodes by choosing combinations of small molecular materials to form a well-dispersed exciplex co-host. Journal of Materials Chemistry C, 2018, 6, 4409-4417.	2.7	29
43	Improving Luminescent Performances of Thermally Activated Delayed Fluorescence Conjugated Polymer by Inhibiting the Intra―and Interchain Quenching. Advanced Optical Materials, 2018, 6, 1701320.	3.6	30
44	Efficient non-doped yellow OLEDs based on thermally activated delayed fluorescence conjugated polymers with an acridine/carbazole donor backbone and triphenyltriazine acceptor pendant. Journal of Materials Chemistry C, 2018, 6, 568-574.	2.7	61
45	Optimizing H-/J-Type Aggregation and Vertical Phase Separation To Improve Photovoltaic Efficiency of Small Molecule Solar Cells by Adding a Macromolecule Additive. ACS Applied Energy Materials, 2018, 1, 6338-6344.	2.5	11
46	High-efficiency ternary polymer solar cells employing the solid solution as the donor phase. Organic Electronics, 2018, 63, 109-113.	1.4	1
47	Solid solution phenomenon in the amorphous conjugated polymer:fullerene bulk heterojunction structure. Organic Electronics, 2018, 62, 1-4.	1.4	4
48	Insight Into the Role of PC71BM on Enhancing the Photovoltaic Performance of Ternary Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 198.	1.8	41
49	High-Energy-Level Blue Phosphor for Solution-Processed White Organic Light-Emitting Diodes with Efficiency Comparable to Fluorescent Tubes. IScience, 2018, 6, 128-137.	1.9	46
50	Dual Förster resonance energy transfer and morphology control to boost the power conversion efficiency of all-polymer OPVs. RSC Advances, 2017, 7, 13289-13298.	1.7	12
51	Tuning molecule diffusion to control the phase separation of the p-DTS(FBTTh ₂) ₂ /EP-PDI blend system via thermal annealing. Journal of Materials Chemistry C, 2017, 5, 6842-6851.	2.7	13
52	Improving the Power Efficiency of Solutionâ€Processed Phosphorescent WOLEDs with a Selfâ€Host Blue Iridium Dendrimer. Advanced Optical Materials, 2017, 5, 1700514.	3.6	19
53	A difluorobenzothiadiazole-based conjugated polymer with alkylthiophene as the side chains for efficient, additive-free and thick-film polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 20473-20481.	5.2	20
54	Thermally Activated Delayed Fluorescence in Cu ^I Complexes Originating from Restricted Molecular Vibrations. Chemistry - A European Journal, 2017, 23, 11761-11766.	1.7	45

#	Article	IF	Citations
55	Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide–Assisted silver nanowire transparent electrode. Organic Electronics, 2017, 50, 255-263.	1.4	25
56	Donor–acceptor conjugated polymers based on two-dimensional thiophene derivatives for bulk heterojunction solar cells. Polymer Chemistry, 2017, 8, 421-430.	1.9	19
57	Fullereneâ€Free Polymer Solar Cells with Open ircuit Voltage above 1.2 V: Tuning Phase Separation Behavior with Oligomer to Replace Polymer Acceptor. Advanced Functional Materials, 2016, 26, 5922-5929.	7.8	35
58	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie, 2016, 128, 1458-1462.	1.6	54
59	Polymer Acceptor Based on Bâ†N Units with Enhanced Electron Mobility for Efficient Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 5313-5317.	7.2	218
60	A Bromoâ€Functionalized Conjugated Polymer as a Crossâ€Linkable Anode Interlayer of Polymer Solar Cells. Chemistry - an Asian Journal, 2016, 11, 1218-1222.	1.7	2
61	A Crossâ€Linkable Donor Polymer as the Underlying Layer to Tune the Active Layer Morphology of Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 226-232.	7.8	41
62	Low-Temperature All-Solution-Processed Transparent Silver Nanowire-Polymer/AZO Nanoparticles Composite Electrodes for Efficient ITO-Free Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34630-34637.	4.0	29
63	Power-efficient solution-processed red organic light-emitting diodes based on an exciplex host and a novel phosphorescent iridium complex. Journal of Materials Chemistry C, 2016, 4, 5787-5794.	2.7	84
64	Morphology-dependent charge recombination through localized states in polymer/polymer blend solar cells. Organic Electronics, 2016, 33, 55-61.	1.4	7
65	A bi-continuous network structure of p-DTS(FBTTh ₂) ₂ /EP-PDI via selective solvent vapor annealing. Journal of Materials Chemistry C, 2016, 4, 10095-10104.	2.7	7
66	Simple and Efficient Green-Light-Emitting Diodes Based on Thin Organolead Bromide Perovskite Films via Tuning Precursor Ratios and Postannealing Temperature. Journal of Physical Chemistry Letters, 2016, 7, 4259-4266.	2.1	38
67	High-efficiency polymer solar cells employing solution-processible and thickness-independent gallium-doped zinc oxide nanoparticles as cathode buffer layers. Journal of Materials Chemistry C, 2016, 4, 10820-10826.	2.7	15
68	Polymer Acceptor Based on Bâ†N Units with Enhanced Electron Mobility for Efficient Allâ€Polymer Solar Cells. Angewandte Chemie, 2016, 128, 5399-5403.	1.6	57
69	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 1436-1440.	7.2	235
70	Synthesis and Electroluminescence of a Conjugated Polymer with Thermally Activated Delayed Fluorescence. Macromolecules, 2016, 49, 4373-4377.	2.2	110
71	Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 2413-2418.	5.2	52
72	Photovoltaic properties of 3,3′-(ethane-1,2-diylidene)-bis(indolin-2-one) based conjugated polymers. RSC Advances, 2016, 6, 11888-11894.	1.7	5

#	Article	IF	Citations
73	Efficient polymer solar cells employing pure ZnO cathode interlayers without thickness-dependent and light-soaking effect and negligible electrode selection. RSC Advances, 2016, 6, 25744-25750.	1.7	5
74	Fully conjugated block copolymers for single-component solar cells: synthesis, purification, and characterization. New Journal of Chemistry, 2016, 40, 1825-1833.	1.4	30
75	Innenrýcktitelbild: Developing Conjugated Polymers with High Electron Affinity by Replacing a CC Unit with a Bâ†N Unit (Angew. Chem. 12/2015). Angewandte Chemie, 2015, 127, 3897-3897.	1.6	0
76	Solution-Processed Phosphorescent Organic Light-Emitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency. Scientific Reports, 2015, 5, 12487.	1.6	122
77	Ultrahigh Colorâ€Stable, Solutionâ€Processed, White OLEDs Using a Dendritic Binary Host and Longâ€Wavelength Dopants with Different Charge Trapping Depths. Advanced Optical Materials, 2015, 3, 1349-1354.	3.6	30
78	Enhancement of luminescence performance from the alteration of stacking patterns of Pt(<scp>ii</scp>) dendrimers. Journal of Materials Chemistry C, 2015, 3, 2744-2750.	2.7	10
79	Facile Preparation of Molybdenum Bronzes as an Efficient Hole Extraction Layer in Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13590-13596.	4.0	15
80	Isoindigo-based low bandgap conjugated polymer for o-xylene processed efficient polymer solar cells with thick active layers. Journal of Materials Chemistry A, 2015, 3, 19928-19935.	5.2	19
81	Novel low-band-gap conjugated polymers based on benzotrithiophene derivatives for bulk heterojunction solar cells. Doklady Chemistry, 2015, 464, 231-235.	0.2	5
82	Dithienocarbazole- and benzothiadiazole-based donor-acceptor conjugated polymers for bulk heterojunction polymer solar cells. Science China Chemistry, 2015, 58, 294-300.	4.2	5
83	Developing Conjugated Polymers with High Electron Affinity by Replacing a CïŁ¿C Unit with a B <i>â†∢/i>N Unit. Angewandte Chemie - International Edition, 2015, 54, 3648-3652.</i>	7.2	212
84	Constructing vertical phase separation of polymer blends via mixed solvents to enhance their photovoltaic performance. Science China Chemistry, 2015, 58, 309-316.	4.2	16
85	Replacing Alkyl with Oligo(ethylene glycol) as Side Chains of Conjugated Polymers for Close π–π Stacking. Macromolecules, 2015, 48, 4357-4363.	2.2	155
86	Sonochemistry-synthesized CuO nanoparticles as an anode interfacial material for efficient and stable polymer solar cells. RSC Advances, 2015, 5, 28786-28793.	1.7	47
87	A binary solvent mixture-induced aggregation of a carbazole dendrimer host toward enhancing the performance of solution-processed blue electrophosphorescent devices. Journal of Materials Chemistry C, 2015, 3, 5050-5055.	2.7	11
88	Low bandgap conjugated polymers based on mono-fluorinated isoindigo for efficient bulk heterojunction polymer solar cells processed with non-chlorinated solvents. Energy and Environmental Science, 2015, 8, 585-591.	15.6	70
89	Phosphonated conjugated polymers for polymer solar cells with a non-halogenated solvent process. Polymer Chemistry, 2015, 6, 805-812.	1.9	26
90	Recent Advances in Solutionâ€Processed White Organic Lightâ€Emitting Materials and Devices. Israel Journal of Chemistry, 2014, 54, 897-917.	1.0	18

#	Article	IF	CITATIONS
91	Donor–spacer–acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors. Journal of Materials Chemistry A, 2014, 2, 3632.	5.2	40
92	A chlorinated phenazine-based donor–acceptor copolymer with enhanced photovoltaic performance. Polymer Chemistry, 2014, 5, 1848.	1.9	33
93	Efficient and stable polymer solar cells with annealing-free solution-processible NiO nanoparticles as anode buffer layers. Journal of Materials Chemistry C, 2014, 2, 8295-8302.	2.7	42
94	High open-circuit voltage polymer/polymer blend solar cells with a polyfluorene copolymer as the electron acceptor. RSC Advances, 2014, 4, 12579.	1.7	20
95	Phosphonate-Functionalized Donor Polymer as an Underlying Interlayer To Improve Active Layer Morphology in Polymer Solar Cells. Macromolecules, 2014, 47, 6246-6251.	2.2	42
96	Zn ^{II} <i>Bis</i> i>terpyridine Metallopolymers: Improved Processability by the Introduction of Polymeric Side Chains. Macromolecular Chemistry and Physics, 2013, 214, 1072-1080.	1.1	13
97	An A′–A–D–A—A′ type small molecule based on 2,7-carbazole for solution-processed organic solar country with high open-circuit voltage. RSC Advances, 2013, 3, 23098.	ells 1.7	15
98	Interfacial triplet confinement for achieving efficient solution-processed deep-blue and white electrophosphorescent devices with underestimated poly(N-vinylcarbazole) as the host. Journal of Materials Chemistry C, 2013, 1, 4933.	2.7	32
99	Effect of film compatibility on electro-optic properties of dye doped polymer DR1/SU-8. Applied Surface Science, 2013, 285, 469-476.	3.1	9
100	A round robin study of polymer solar cells and small modules across China. Solar Energy Materials and Solar Cells, 2013, 117, 382-389.	3.0	10
101	In Situ Formation of MoO ₃ in PEDOT:PSS Matrix: A Facile Way to Produce a Smooth and Less Hygroscopic Hole Transport Layer for Highly Stable Polymer Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 349-355.	10.2	118
102	Synthesis and photovoltaic performance of donor–acceptor copolymers based on thieno[3,2-b]quinoxaline. Polymer Chemistry, 2013, 4, 2884.	1.9	4
103	Constructing the nanointerpenetrating structure of PCDTBT:PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing. Journal of Materials Chemistry A, 2013, 1, 6216.	5.2	72
104	Effect of sideâ€chain positions on morphology and photovoltaic properties of phenazineâ€based donorâ€"acceptor copolymers. Journal of Polymer Science Part A, 2013, 51, 2910-2918.	2.5	13
105	Small molecules based on 2,7-carbazole for efficient solution-processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 8805.	5.2	33
106	Enhancement of inverted polymer solar cells with solution-processed ZnO-TiOX composite as cathode buffer layer. Applied Physics Letters, 2012, 100, 213906.	1.5	52
107	Two dimensional photovoltaic copolymers based on new benzothiadiazole acceptors with diphenylamine-vinylene side chains. Polymer Chemistry, 2012, 3, 2933.	1.9	17
108	Synthesis and photovoltaic properties of new conjugated polymers based on syn- and anti-benzodifuran. Polymer Chemistry, 2012, 3, 2949.	1.9	30

#	Article	IF	Citations
109	Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures. Organic Electronics, 2012, 13, 2733-2740.	1.4	41
110	Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells. Journal of Polymer Science Part A, 2012, 50, 1663-1671.	2.5	18
111	White electroluminescent singleâ€polymer achieved by incorporating three polyfluorene blue arms into a starâ€shaped orange core. Journal of Polymer Science Part A, 2012, 50, 2854-2862.	2.5	33
112	Highâ€Efficiency Single Emissive Layer White Organic Lightâ€Emitting Diodes Based on Solutionâ€Processed Dendritic Host and New Orangeâ€Emitting Iridium Complex. Advanced Materials, 2012, 24, 1873-1877.	11.1	345
113	Phosphonate-functionalized polyfluorene and its application in organic optoelectronic devices. Polymer Bulletin, 2012, 68, 829-845.	1.7	6
114	Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers. Macromolecules, 2011, 44, 1414-1420.	2.2	145
115	Red electroluminescent polyfluorenes containing highly efficient 2,1,3-benzoselenadiazole- and 2,1,3-naphthothiadiazole-based red dopants in the side chain. Journal of Materials Chemistry, 2011, 21, 15773.	6.7	15
116	Polyfluorenes containing pyrazine units: Synthesis, photophysics and electroluminescence. Science China Chemistry, 2011, 54, 656-665.	4.2	15
117	Pure blue electroluminescent poly(aryl ether)s with dopant–host systems. Journal of Polymer Science Part A, 2011, 49, 3911-3919.	2.5	12
118	Enhanced Performance for Polymer Solar Cells by Using Surfactantâ∈Modified PEDOT:PSS as the Anode Buffer Layer. Macromolecular Chemistry and Physics, 2011, 212, 1846-1851.	1.1	23
119	Phosphorescent Cuprous Complexes with N,O Ligands – Synthesis, Photoluminescence, and Electroluminescence. European Journal of Inorganic Chemistry, 2010, 2010, 4009-4017.	1.0	41
120	Highâ€Performance Allâ€Polymer Whiteâ€Lightâ€Emitting Diodes Using Polyfluorene Containing Phosphonate Groups as an Efficient Electronâ€Injection Layer. Advanced Functional Materials, 2010, 20, 2951-2957.	7.8	87
121	Pure and Saturated Red Electroluminescent Polyfluorenes with Dopant/Host System and PLED Efficiency/Color Purity Tradeâ€Offs. Advanced Functional Materials, 2010, 20, 3143-3153.	7.8	60
122	Synthesis and Photovoltaic Properties of Conjugated Copolymers with Benzo[1,2â€b:4,5â€b′]dithiophene and Bis(thiophene)phthalimide Units. Macromolecular Chemistry and Physics, 2010, 211, 2596-2601.	1.1	25
123	Synthesis and characterization of polyfluorenes containing bisphenazine units. Journal of Polymer Science Part A, 2010, 48, 1990-1999.	2.5	17
124	On the origin of efficient electron injection at phosphonate-functionalized polyfluorene/aluminum interface in efficient polymer light-emitting diodes. Applied Physics Letters, 2010, 97, .	1.5	22
125	Alkyl substituted [6,6]-thienyl-C61-butyric acid methyl esters: easily accessible acceptor materials for bulk-heterojunction polymer solar cells. Journal of Materials Chemistry, 2010, 20, 3092.	6.7	26
126	Efficient Electrophosphorescence from a Platinum Metallopolyyne Featuring a 2,7 arbazole Chromophore. Macromolecular Chemistry and Physics, 2009, 210, 1786-1798.	1.1	62

#	Article	IF	CITATIONS
127	Macromol. Chem. Phys. 21/2009. Macromolecular Chemistry and Physics, 2009, 210, NA-NA.	1.1	0
128	Solvent vaporâ€induced self assembly and its influence on optoelectronic conversion of poly(3â€hexylthiophene): Methanofullerene bulk heterojunction photovoltaic cells. Journal of Applied Polymer Science, 2009, 111, 1799-1804.	1.3	36
129	Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. Journal of Materials Chemistry, 2009, 19, 2199.	6.7	189
130	Synthesis and characterization of colorâ€stable electroluminescent polymers: Poly(dinaphtho[1,2â€a:1′,2′â€g]â€ <i>s</i> àêindacene)s. Journal of Polymer Science Part A, 2008, 46, 4866	- 48 58.	15
131	White Electroluminescence from a Starâ€ike Polymer with an Orange Emissive Core and Four Blue Emissive Arms. Advanced Materials, 2008, 20, 1357-1362.	11.1	115
132	Highly efficient red electroluminescent polymers with dopant/host system and molecular dispersion feature: polyfluorene as the host and 2,1,3-benzothiadiazole derivatives as the red dopant. Journal of Materials Chemistry, 2008, 18, 319-327.	6.7	33
133	Blue electroluminescent polymers with dopant–host systems and molecular dispersion features: polyfluorene as the deep blue host and 1,8-naphthalimide derivative units as the light blue dopants. Journal of Materials Chemistry, 2008, 18, 1659.	6.7	33
134	Multifunctional metallophosphors with anti-triplet–triplet annihilation properties for solution-processable electroluminescent devices. Journal of Materials Chemistry, 2008, 18, 1799.	6.7	108
135	New Carbazole-Based Copolymers as Amorphous Hole-Transporting Materials for Multilayer Light-Emitting Diodes. Macromolecular Chemistry and Physics, 2007, 208, 349-355.	1.1	32
136	Synthesis and characterization of white-light-emitting polyfluorenes containing orange phosphorescent moieties in the side chain. Journal of Polymer Science Part A, 2007, 45, 1746-1757.	2.5	57
137	Luminescent supramolecular polymers: Cd2+-directed polymerization and properties. Polymer International, 2007, 56, 648-654.	1.6	20
138	Synthesis, Crystal Structure, Spectroscopy and Electroluminescence of Zinc(II) Complexes Containing Bidentate 2-(2-pyridyl)quinoline Derivative Ligands. Transition Metal Chemistry, 2006, 31, 639-644.	0.7	16
139	Synthesis of novel nitrogen- and sulfur-containing conjugated polymers used as hole-transporting materials for organic light-emitting diodes. Journal of Polymer Science Part A, 2002, 40, 1321-1333.	2.5	4