Zhiyuan Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/517343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€Efficiency Single Emissive Layer White Organic Lightâ€Emitting Diodes Based on Solutionâ€Processed Dendritic Host and New Orangeâ€Emitting Iridium Complex. Advanced Materials, 2012, 24, 1873-1877.	11.1	345
2	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 1436-1440.	7.2	235
3	Polymer Acceptor Based on Bâ†N Units with Enhanced Electron Mobility for Efficient Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 5313-5317.	7.2	218
4	Developing Conjugated Polymers with High Electron Affinity by Replacing a CC Unit with a B <i>â†</i> N Unit. Angewandte Chemie - International Edition, 2015, 54, 3648-3652.	7.2	212
5	Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance. Journal of Materials Chemistry, 2009, 19, 2199.	6.7	189
6	Replacing Alkyl with Oligo(ethylene glycol) as Side Chains of Conjugated Polymers for Close π–π Stacking. Macromolecules, 2015, 48, 4357-4363.	2.2	155
7	Synthesis and Photovoltaic Properties of New Low Bandgap Isoindigo-Based Conjugated Polymers. Macromolecules, 2011, 44, 1414-1420.	2.2	145
8	Solution-Processed Phosphorescent Organic Light-Emitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency. Scientific Reports, 2015, 5, 12487.	1.6	122
9	In Situ Formation of MoO ₃ in PEDOT:PSS Matrix: A Facile Way to Produce a Smooth and Less Hygroscopic Hole Transport Layer for Highly Stable Polymer Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 349-355.	10.2	118
10	White Electroluminescence from a Starâ€like Polymer with an Orange Emissive Core and Four Blue Emissive Arms. Advanced Materials, 2008, 20, 1357-1362.	11.1	115
11	Synthesis and Electroluminescence of a Conjugated Polymer with Thermally Activated Delayed Fluorescence. Macromolecules, 2016, 49, 4373-4377.	2.2	110
12	Multifunctional metallophosphors with anti-triplet–triplet annihilation properties for solution-processable electroluminescent devices. Journal of Materials Chemistry, 2008, 18, 1799.	6.7	108
13	Highâ€Performance Allâ€Polymer Whiteâ€Lightâ€Emitting Diodes Using Polyfluorene Containing Phosphonate Groups as an Efficient Electronâ€Injection Layer. Advanced Functional Materials, 2010, 20, 2951-2957.	7.8	87
14	Power-efficient solution-processed red organic light-emitting diodes based on an exciplex host and a novel phosphorescent iridium complex. Journal of Materials Chemistry C, 2016, 4, 5787-5794.	2.7	84
15	Separating Crystallization Process of P3HT and Oâ€IDTBR to Construct Highly Crystalline Interpenetrating Network with Optimized Vertical Phase Separation. Advanced Functional Materials, 2019, 29, 1807591.	7.8	82
16	Constructing the nanointerpenetrating structure of PCDTBT:PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing. Journal of Materials Chemistry A, 2013, 1, 6216.	5.2	72
17	Low bandgap conjugated polymers based on mono-fluorinated isoindigo for efficient bulk heterojunction polymer solar cells processed with non-chlorinated solvents. Energy and Environmental Science, 2015, 8, 585-591.	15.6	70
18	Efficient Electrophosphorescence from a Platinum Metallopolyyne Featuring a 2,7 arbazole Chromophore. Macromolecular Chemistry and Physics, 2009, 210, 1786-1798.	1.1	62

#	Article	IF	CITATIONS
19	Efficient non-doped yellow OLEDs based on thermally activated delayed fluorescence conjugated polymers with an acridine/carbazole donor backbone and triphenyltriazine acceptor pendant. Journal of Materials Chemistry C, 2018, 6, 568-574.	2.7	61
20	Pure and Saturated Red Electroluminescent Polyfluorenes with Dopant/Host System and PLED Efficiency/Color Purity Tradeâ€Offs. Advanced Functional Materials, 2010, 20, 3143-3153.	7.8	60
21	Synthesis and characterization of white-light-emitting polyfluorenes containing orange phosphorescent moieties in the side chain. Journal of Polymer Science Part A, 2007, 45, 1746-1757.	2.5	57
22	Polymer Acceptor Based on Bâ†N Units with Enhanced Electron Mobility for Efficient Allâ€Polymer Solar Cells. Angewandte Chemie, 2016, 128, 5399-5403.	1.6	57
23	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie, 2016, 128, 1458-1462.	1.6	54
24	Enhancement of inverted polymer solar cells with solution-processed ZnO-TiOX composite as cathode buffer layer. Applied Physics Letters, 2012, 100, 213906.	1.5	52
25	Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 2413-2418.	5.2	52
26	Rigidity and Polymerization Amplified Red Thermally Activated Delayed Fluorescence Polymers for Constructing Red and Singleâ€Emissive‣ayer White OLEDs. Advanced Functional Materials, 2020, 30, 2002493.	7.8	51
27	Rotation-restricted thermally activated delayed fluorescence compounds for efficient solution-processed OLEDs with EQEs of up to 24.3% and small roll-off. Chemical Communications, 2020, 56, 5957-5960.	2.2	51
28	Highly Efficient TADF Polymer Electroluminescence with Reduced Efficiency Roll-off via Interfacial Exciplex Host Strategy. ACS Applied Materials & Interfaces, 2018, 10, 47-52.	4.0	48
29	Sonochemistry-synthesized CuO nanoparticles as an anode interfacial material for efficient and stable polymer solar cells. RSC Advances, 2015, 5, 28786-28793.	1.7	47
30	Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr ₃ perovskite films. Journal of Materials Chemistry C, 2019, 7, 5596-5603.	2.7	47
31	High-Energy-Level Blue Phosphor for Solution-Processed White Organic Light-Emitting Diodes with Efficiency Comparable to Fluorescent Tubes. IScience, 2018, 6, 128-137.	1.9	46
32	Thermally Activated Delayed Fluorescence in Cu ^I Complexes Originating from Restricted Molecular Vibrations. Chemistry - A European Journal, 2017, 23, 11761-11766.	1.7	45
33	Additive and High-Temperature Processing Boost the Photovoltaic Performance of Nonfullerene Organic Solar Cells Fabricated with Blade Coating and Nonhalogenated Solvents. ACS Applied Materials & Interfaces, 2021, 13, 10239-10248.	4.0	44
34	Efficient and stable polymer solar cells with annealing-free solution-processible NiO nanoparticles as anode buffer layers. Journal of Materials Chemistry C, 2014, 2, 8295-8302.	2.7	42
35	Phosphonate-Functionalized Donor Polymer as an Underlying Interlayer To Improve Active Layer Morphology in Polymer Solar Cells. Macromolecules, 2014, 47, 6246-6251.	2.2	42
36	Optimizing domain size and phase purity in all-polymer solar cells by solution ordered aggregation and confinement effect of the acceptor. Journal of Materials Chemistry C, 2019, 7, 12560-12571.	2.7	42

#	Article	IF	CITATIONS
37	Phosphorescent Cuprous Complexes with N,O Ligands – Synthesis, Photoluminescence, and Electroluminescence. European Journal of Inorganic Chemistry, 2010, 2010, 4009-4017.	1.0	41
38	Improving the nanoscale morphology and processibility for PCDTBT-based polymer solar cells via solvent mixtures. Organic Electronics, 2012, 13, 2733-2740.	1.4	41
39	A Crossâ€Linkable Donor Polymer as the Underlying Layer to Tune the Active Layer Morphology of Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 226-232.	7.8	41
40	Insight Into the Role of PC71BM on Enhancing the Photovoltaic Performance of Ternary Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 198.	1.8	41
41	Donor–spacer–acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors. Journal of Materials Chemistry A, 2014, 2, 3632.	5.2	40
42	Simple and Efficient Green-Light-Emitting Diodes Based on Thin Organolead Bromide Perovskite Films via Tuning Precursor Ratios and Postannealing Temperature. Journal of Physical Chemistry Letters, 2016, 7, 4259-4266.	2.1	38
43	Supercapacitor electrodes based on metalâ€organic compounds from the first transition metal series. EcoMat, 2021, 3, e12106.	6.8	38
44	Solvent vaporâ€induced self assembly and its influence on optoelectronic conversion of poly(3â€hexylthiophene): Methanofullerene bulk heterojunction photovoltaic cells. Journal of Applied Polymer Science, 2009, 111, 1799-1804.	1.3	36
45	Bright and Color-Stable Blue-Light-Emitting Diodes based on Three-Dimensional Perovskite Polycrystalline Films via Morphology and Interface Engineering. Journal of Physical Chemistry Letters, 2020, 11, 1411-1418.	2.1	36
46	Fullereneâ€Free Polymer Solar Cells with Openâ€Circuit Voltage above 1.2 V: Tuning Phase Separation Behavior with Oligomer to Replace Polymer Acceptor. Advanced Functional Materials, 2016, 26, 5922-5929.	7.8	35
47	Highly efficient red electroluminescent polymers with dopant/host system and molecular dispersion feature: polyfluorene as the host and 2,1,3-benzothiadiazole derivatives as the red dopant. Journal of Materials Chemistry, 2008, 18, 319-327.	6.7	33
48	Blue electroluminescent polymers with dopant–host systems and molecular dispersion features: polyfluorene as the deep blue host and 1,8-naphthalimide derivative units as the light blue dopants. Journal of Materials Chemistry, 2008, 18, 1659.	6.7	33
49	White electroluminescent singleâ€polymer achieved by incorporating three polyfluorene blue arms into a starâ€shaped orange core. Journal of Polymer Science Part A, 2012, 50, 2854-2862.	2.5	33
50	Small molecules based on 2,7-carbazole for efficient solution-processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 8805.	5.2	33
51	A chlorinated phenazine-based donor–acceptor copolymer with enhanced photovoltaic performance. Polymer Chemistry, 2014, 5, 1848.	1.9	33
52	New Carbazole-Based Copolymers as Amorphous Hole-Transporting Materials for Multilayer Light-Emitting Diodes. Macromolecular Chemistry and Physics, 2007, 208, 349-355.	1.1	32
53	Interfacial triplet confinement for achieving efficient solution-processed deep-blue and white electrophosphorescent devices with underestimated poly(N-vinylcarbazole) as the host. Journal of Materials Chemistry C, 2013, 1, 4933	2.7	32
54	Efficient Nonhalogenated Solvent-Processed Ternary All-Polymer Solar Cells with a Favorable Morphology Enabled by Two Well-Compatible Donors. ACS Applied Materials & Interfaces, 2019, 11, 32200-32208.	4.0	32

#	Article	IF	CITATIONS
55	Synthesis and photovoltaic properties of new conjugated polymers based on syn- and anti-benzodifuran. Polymer Chemistry, 2012, 3, 2949.	1.9	30
56	Ultrahigh Color‣table, Solutionâ€Processed, White OLEDs Using a Dendritic Binary Host and Longâ€Wavelength Dopants with Different Charge Trapping Depths. Advanced Optical Materials, 2015, 3, 1349-1354.	3.6	30
57	Fully conjugated block copolymers for single-component solar cells: synthesis, purification, and characterization. New Journal of Chemistry, 2016, 40, 1825-1833.	1.4	30
58	Improving Luminescent Performances of Thermally Activated Delayed Fluorescence Conjugated Polymer by Inhibiting the Intra―and Interchain Quenching. Advanced Optical Materials, 2018, 6, 1701320.	3.6	30
59	Low-Temperature All-Solution-Processed Transparent Silver Nanowire-Polymer/AZO Nanoparticles Composite Electrodes for Efficient ITO-Free Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34630-34637.	4.0	29
60	Power-efficient and solution-processed red phosphorescent organic light-emitting diodes by choosing combinations of small molecular materials to form a well-dispersed exciplex co-host. Journal of Materials Chemistry C, 2018, 6, 4409-4417.	2.7	29
61	Alkyl substituted [6,6]-thienyl-C61-butyric acid methyl esters: easily accessible acceptor materials for bulk-heterojunction polymer solar cells. Journal of Materials Chemistry, 2010, 20, 3092.	6.7	26
62	Phosphonated conjugated polymers for polymer solar cells with a non-halogenated solvent process. Polymer Chemistry, 2015, 6, 805-812.	1.9	26
63	Synthesis and Photovoltaic Properties of Conjugated Copolymers with Benzo[1,2â€b:4,5â€bâ€2]dithiophene and Bis(thiophene)phthalimide Units. Macromolecular Chemistry and Physics, 2010, 211, 2596-2601.	1.1	25
64	Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide–Assisted silver nanowire transparent electrode. Organic Electronics, 2017, 50, 255-263.	1.4	25
65	Enhanced Performance for Polymer Solar Cells by Using Surfactantâ€Modified PEDOT:PSS as the Anode Buffer Layer. Macromolecular Chemistry and Physics, 2011, 212, 1846-1851.	1.1	23
66	High-efficiency ternary nonfullerene organic solar cells fabricated with a near infrared acceptor enhancing exciton utilization and extending absorption. Journal of Materials Chemistry C, 2019, 7, 10498-10506.	2.7	23
67	On the origin of efficient electron injection at phosphonate-functionalized polyfluorene/aluminum interface in efficient polymer light-emitting diodes. Applied Physics Letters, 2010, 97, .	1.5	22
68	Recent Applications of Interfacial Exciplex as Ideal Host of Power-Efficient OLEDs. Frontiers in Chemistry, 2019, 7, 306.	1.8	22
69	Luminescent supramolecular polymers: Cd2+-directed polymerization and properties. Polymer International, 2007, 56, 648-654.	1.6	20
70	High open-circuit voltage polymer/polymer blend solar cells with a polyfluorene copolymer as the electron acceptor. RSC Advances, 2014, 4, 12579.	1.7	20
71	A difluorobenzothiadiazole-based conjugated polymer with alkylthiophene as the side chains for efficient, additive-free and thick-film polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 20473-20481.	5.2	20
72	Isoindigo-based low bandgap conjugated polymer for o-xylene processed efficient polymer solar cells with thick active layers. Journal of Materials Chemistry A, 2015, 3, 19928-19935.	5.2	19

#	Article	IF	CITATIONS
73	Improving the Power Efficiency of Solutionâ€Processed Phosphorescent WOLEDs with a Selfâ€Host Blue Iridium Dendrimer. Advanced Optical Materials, 2017, 5, 1700514.	3.6	19
74	Donor–acceptor conjugated polymers based on two-dimensional thiophene derivatives for bulk heterojunction solar cells. Polymer Chemistry, 2017, 8, 421-430.	1.9	19
75	Backboneâ€Acceptor/Pendantâ€Ðonor Strategy for Efficient Thermally Activated Delayed Fluorescence Conjugated Polymers with External Quantum Efficiency Close to 25% and Emission Peak at 608Ânm. Advanced Optical Materials, 2021, 9, 2001981.	3.6	19
76	Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells. Journal of Polymer Science Part A, 2012, 50, 1663-1671.	2.5	18
77	Recent Advances in Solutionâ€Processed White Organic Lightâ€Emitting Materials and Devices. Israel Journal of Chemistry, 2014, 54, 897-917.	1.0	18
78	Synthesis and characterization of polyfluorenes containing bisphenazine units. Journal of Polymer Science Part A, 2010, 48, 1990-1999.	2.5	17
79	Two dimensional photovoltaic copolymers based on new benzothiadiazole acceptors with diphenylamine-vinylene side chains. Polymer Chemistry, 2012, 3, 2933.	1.9	17
80	N–B ↕N Bridged Bithiophene: A Building Block with Reduced Band Gap to Design n-Type Conjugated Polymers. Macromolecules, 2021, 54, 6718-6725.	2.2	17
81	Synthesis, Crystal Structure, Spectroscopy and Electroluminescence of Zinc(II) Complexes Containing Bidentate 2-(2-pyridyl)quinoline Derivative Ligands. Transition Metal Chemistry, 2006, 31, 639-644.	0.7	16
82	Constructing vertical phase separation of polymer blends via mixed solvents to enhance their photovoltaic performance. Science China Chemistry, 2015, 58, 309-316.	4.2	16
83	Synthesis and characterization of colorâ€stable electroluminescent polymers: Poly(dinaphtho[1,2â€a:1′,2′â€g]â€ <i>s</i> â€indacene)s. Journal of Polymer Science Part A, 2008, 46, 4866	-4878.	15
84	Red electroluminescent polyfluorenes containing highly efficient 2,1,3-benzoselenadiazole- and 2,1,3-naphthothiadiazole-based red dopants in the side chain. Journal of Materials Chemistry, 2011, 21, 15773.	6.7	15
85	Polyfluorenes containing pyrazine units: Synthesis, photophysics and electroluminescence. Science China Chemistry, 2011, 54, 656-665.	4.2	15
86	An A′–A–D–A–A′ type small molecule based on 2,7-carbazole for solution-processed organic solar c with high open-circuit voltage. RSC Advances, 2013, 3, 23098.	ells 1.7	15
87	Facile Preparation of Molybdenum Bronzes as an Efficient Hole Extraction Layer in Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 13590-13596.	4.0	15
88	High-efficiency polymer solar cells employing solution-processible and thickness-independent gallium-doped zinc oxide nanoparticles as cathode buffer layers. Journal of Materials Chemistry C, 2016, 4, 10820-10826.	2.7	15
89	Non-Halogenated Solvents and Layer-by-Layer Blade-Coated Ternary Organic Solar Cells via Cascade Acceptor Adjusting Morphology and Crystallization to Reduce Energy Loss. ACS Applied Materials & Interfaces, 2022, 14, 31054-31065.	4.0	15
90	One-step solution-processed low surface roughness silver nanowire composite transparent electrode for efficient flexible indium tin oxide-free polymer solar cells. Thin Solid Films, 2021, 718, 138486.	0.8	14

#	Article	IF	CITATIONS
91	Zn ^{II} <i>Bis</i> terpyridine Metallopolymers: Improved Processability by the Introduction of Polymeric Side Chains. Macromolecular Chemistry and Physics, 2013, 214, 1072-1080.	1.1	13
92	Effect of sideâ€chain positions on morphology and photovoltaic properties of phenazineâ€based donor–acceptor copolymers. Journal of Polymer Science Part A, 2013, 51, 2910-2918.	2.5	13
93	Tuning molecule diffusion to control the phase separation of the p-DTS(FBTTh ₂) ₂ /EP-PDI blend system via thermal annealing. Journal of Materials Chemistry C, 2017, 5, 6842-6851.	2.7	13
94	Pure blue electroluminescent poly(aryl ether)s with dopant–host systems. Journal of Polymer Science Part A, 2011, 49, 3911-3919.	2.5	12
95	Dual Förster resonance energy transfer and morphology control to boost the power conversion efficiency of all-polymer OPVs. RSC Advances, 2017, 7, 13289-13298.	1.7	12
96	Efficient Skyâ€Blue Lightâ€Emitting Diodes Based on Oriented Perovskite Nanoplates. Advanced Optical Materials, 2022, 10, 2101525.	3.6	12
97	A binary solvent mixture-induced aggregation of a carbazole dendrimer host toward enhancing the performance of solution-processed blue electrophosphorescent devices. Journal of Materials Chemistry C, 2015, 3, 5050-5055.	2.7	11
98	Optimizing H-/J-Type Aggregation and Vertical Phase Separation To Improve Photovoltaic Efficiency of Small Molecule Solar Cells by Adding a Macromolecule Additive. ACS Applied Energy Materials, 2018, 1, 6338-6344.	2.5	11
99	Ultrafast spectroscopic investigation of the effect of solvent additives on charge photogeneration and recombination dynamics in non-fullerene organic photovoltaic blends. Journal of Materials Chemistry C, 2020, 8, 6724-6733.	2.7	11
100	Effective defect passivation of CsPbBr ₃ quantum dots using gallium cations toward the fabrication of bright perovskite LEDs. Journal of Materials Chemistry C, 2021, 9, 11324-11330.	2.7	11
101	A round robin study of polymer solar cells and small modules across China. Solar Energy Materials and Solar Cells, 2013, 117, 382-389.	3.0	10
102	Enhancement of luminescence performance from the alteration of stacking patterns of Pt(<scp>ii</scp>) dendrimers. Journal of Materials Chemistry C, 2015, 3, 2744-2750.	2.7	10
103	Synthesis and Photovoltaic Investigation of 8,10-Bis(2-octyldodecyl)-8,10-dihydro-9 <i>H</i> -bisthieno[2′,3′:7,8;3″,2″:5,6] naphtho[2,3- <i>d</i>]imidazol-9-one Based Conjugated Polymers Using a Nonfullerene Acceptor. ACS Applied Energy Materials 2020.3, 495-505	2.5	10
104	MEA surface passivation of a AgNWs:SnO ₂ composite transparent electrode enables efficient flexible ITO-free polymer solar cells. Journal of Materials Chemistry C, 2021, 9, 9914-9921.	2.7	10
105	Effect of film compatibility on electro-optic properties of dye doped polymer DR1/SU-8. Applied Surface Science, 2013, 285, 469-476.	3.1	9
106	Highly efficient organic light-emitting diodes employing the periodic micro-structured ITO substrate fabricated by holographic lithography. Organic Electronics, 2019, 75, 105438.	1.4	9
107	Synthesis and Characterization of a Large-Sized π-Conjugated Copper(II) Complex Nanosheet. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 254-258.	1.9	9
108	The application of a high boiling point dissolution solvent on a poly(<i>N</i> -vinylcarbazole) host toward improving the performance of blue electrophosphorescent devices <i>via</i> a solution process. Journal of Materials Chemistry C, 2018, 6, 4427-4434.	2.7	8

#	Article	IF	CITATIONS
109	Wide bandgap donor-acceptor conjugated polymers with alkylthiophene as side chains for high-performance non-fullerene polymer solar cells. Organic Electronics, 2019, 65, 31-38.	1.4	8
110	Efficient semi-transparent organic solar cells enabled by a quasi-heterojunction active layer structure. Journal of Materials Chemistry C, 2022, 10, 3720-3728.	2.7	8
111	A polymer acceptor containing a B ↕N unit with strong fluorescence for organic photovoltaics. Journal of Materials Chemistry C, 2022, 10, 10860-10865.	2.7	8
112	Morphology-dependent charge recombination through localized states in polymer/polymer blend solar cells. Organic Electronics, 2016, 33, 55-61.	1.4	7
113	A bi-continuous network structure of p-DTS(FBTTh ₂) ₂ /EP-PDI via selective solvent vapor annealing. Journal of Materials Chemistry C, 2016, 4, 10095-10104.	2.7	7
114	Semi-transparent organic solar cells with high visible transmission enabled by a transparent wide-bandgap donor. Organic Electronics, 2021, 93, 106140.	1.4	7
115	Phosphonate-functionalized polyfluorene and its application in organic optoelectronic devices. Polymer Bulletin, 2012, 68, 829-845.	1.7	6
116	Synthesis and Photovoltaic Properties of New Conjugated Dâ€A Polymers Based on the Same Fluoroâ€Benzothiadiazole Acceptor Unit and Different Donor Units. ChemistrySelect, 2020, 5, 853-863.	0.7	6
117	Novel low-band-gap conjugated polymers based on benzotrithiophene derivatives for bulk heterojunction solar cells. Doklady Chemistry, 2015, 464, 231-235.	0.2	5
118	Dithienocarbazole- and benzothiadiazole-based donor-acceptor conjugated polymers for bulk heterojunction polymer solar cells. Science China Chemistry, 2015, 58, 294-300.	4.2	5
119	Photovoltaic properties of 3,3′-(ethane-1,2-diylidene)-bis(indolin-2-one) based conjugated polymers. RSC Advances, 2016, 6, 11888-11894.	1.7	5
120	Efficient polymer solar cells employing pure ZnO cathode interlayers without thickness-dependent and light-soaking effect and negligible electrode selection. RSC Advances, 2016, 6, 25744-25750.	1.7	5
121	Insight into correlation between molecular length and exciton dissociation, charge transport and recombination in Polymer: Oligomer based solar cells. Organic Electronics, 2018, 58, 75-81.	1.4	5
122	Conjugated random terpolymers based on benzodithiophene, diketopyrrolopyrrole, and 8,10â€bis(thiophenâ€2â€yl)â€2,5â€di(nonadecanâ€3â€yl)bis[1,3]thiazolo[4,5―f :5′,4′―h]thieno[3,4a Efficient Polymer Solar Cell. Journal of Polymer Science Part A, 2019, 57, 1478-1485.	―b2] aµuin	oxa b ine for
123	Impacts of a second acceptor on the energy loss, blend morphology and carrier dynamics in non-fullerene ternary polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 11727-11734.	2.7	5
124	Synthesis of novel nitrogen- and sulfur-containing conjugated polymers used as hole-transporting materials for organic light-emitting diodes. Journal of Polymer Science Part A, 2002, 40, 1321-1333.	2.5	4
125	Synthesis and photovoltaic performance of donor–acceptor copolymers based on thieno[3,2-b]quinoxaline. Polymer Chemistry, 2013, 4, 2884.	1.9	4
126	Solid solution phenomenon in the amorphous conjugated polymer:fullerene bulk heterojunction structure. Organic Electronics, 2018, 62, 1-4.	1.4	4

#	Article	IF	CITATIONS
127	Carbazole ring: A delicate rack for constructing thermally activated delayed fluorescent compounds with through-space charge transfer. Chinese Chemical Letters, 2021, 32, 4011-4014.	4.8	4
128	Effects of 1,8-diiodooctane on ultrafast charge carrier dynamics and photovoltaic performance in organic solar cells: A comparison of PC71BM and nonfullerene acceptor IT-M. Organic Electronics, 2020, 81, 105690.	1.4	3
129	Synthesis, characterization, and optoelectronic properties of phenothiazine-based organic co-poly-ynes. New Journal of Chemistry, 2021, 45, 15082-15095.	1.4	3
130	H2O treatment-induced uniform NiOX interfacial layer boosting brightness and light-emitting efficiency of blue perovskite electroluminescence. Organic Electronics, 2021, 98, 106299.	1.4	3
131	A Bromoâ€Functionalized Conjugated Polymer as a Crossâ€Linkable Anode Interlayer of Polymer Solar Cells. Chemistry - an Asian Journal, 2016, 11, 1218-1222.	1.7	2
132	Efficient ternary polymer solar cell using wide bandgap conjugated polymer donor with two nonâ€fullerene small molecule acceptors enabled power conversion efficiency of 16% with low energy loss of 0.47 eV. Nano Select, 2021, 2, 1326-1335.	1.9	2
133	Inert polymer modification of an exciplex emitter enhances the light-emitting efficiency and reduces the efficiency roll-off of solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 8459-8465.	2.7	2
134	High-efficiency ternary polymer solar cells employing the solid solution as the donor phase. Organic Electronics, 2018, 63, 109-113.	1.4	1
135	Face-on orientation and vertical phase separation of p-DTS(FBTTh2)2/PC70BM induced by epitaxial crystallization of polymer interface layer. Organic Electronics, 2020, 77, 105512.	1.4	1
136	Solid solution effect boosts the photovoltaic performance of PCDTBT-based organic solar cells. Organic Electronics, 2022, 104, 106489.	1.4	1
137	Macromol. Chem. Phys. 21/2009. Macromolecular Chemistry and Physics, 2009, 210, NA-NA.	1.1	0
138	Innenrücktitelbild: Developing Conjugated Polymers with High Electron Affinity by Replacing a CC Unit with a Bâ†N Unit (Angew. Chem. 12/2015). Angewandte Chemie, 2015, 127, 3897-3897.	1.6	0
139	Managing intramolecular energy transfer in well-defined polyfluorenes grafting one/two orange emissive groups on central or terminal fluorene unit. Polymer, 2019, 168, 36-43.	1.8	0