
Nicholas S Skowronski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5172750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of local adaptation in litter flammability of a widespread fireâ€adaptive pine. Journal of Ecology, 2022, 110, 1138-1148.	4.0	3
2	Representing low-intensity fireÂsensible heat output in a mesoscale atmospheric model with a canopy submodel: a case study with ARPS-CANOPY (version 5.2.12). Geoscientific Model Development, 2022, 15, 1713-1734.	3.6	0
3	LiDAR Voxel-Size Optimization for Canopy Gap Estimation. Remote Sensing, 2022, 14, 1054.	4.0	6
4	Exploring golden eagle habitat preference using lidar-based canopy bulk density. Remote Sensing Letters, 2022, 13, 556-567.	1.4	1
5	Can restoration of fireâ€dependent ecosystems reduce ticks and tickâ€borne disease prevalence in the eastern United States?. Ecological Applications, 2022, 32, e2637.	3.8	9
6	Design and implementation of a portable, large-scale wind tunnel for wildfire research. Fire Safety Journal, 2022, 131, 103607.	3.1	2
7	Convective heat transfer in pine forest litter beds. International Journal of Heat and Mass Transfer, 2022, 195, 123057.	4.8	3
8	Detailed physical modeling of wildland fire dynamics at field scale - An experimentally informed evaluation. Fire Safety Journal, 2021, 120, 103051.	3.1	9
9	Flame spread behavior characterization of discrete fuel array under a forced flow. Proceedings of the Combustion Institute, 2021, 38, 5109-5117.	3.9	16
10	Bark charcoal reflectance may have the potential to estimate the heat delivered to tree boles by wildland fires. International Journal of Wildland Fire, 2021, 30, 391.	2.4	7
11	A simplified and affordable approach to forest monitoring using single terrestrial laser scans and transect sampling. MethodsX, 2021, 8, 101484.	1.6	13
12	Approaches to Modeling Bed Drag in Pine Forest Litter for Wildland Fire Applications. Transport in Porous Media, 2021, 138, 637-660.	2.6	7
13	Turbulent Momentum Flux Behavior above a Fire Front in an Open-Canopied Forest. Atmosphere, 2021, 12, 956.	2.3	4
14	Flame spread predictions over linear discrete fuel arrays using an empirical B-number model and stagnation point flow. Combustion and Flame, 2021, 234, 111644.	5.2	9
15	Reconstruction of the Spring Hill Wildfire and Exploration of Alternate Management Scenarios Using QUIC-Fire. Fire, 2021, 4, 72.	2.8	5
16	Estimation of Plot-Level Burn Severity Using Terrestrial Laser Scanning. Remote Sensing, 2021, 13, 4168.	4.0	7
17	Development of a Field Deployable Firebrand Flux and Condition Measurement System. Fire Technology, 2021, 57, 1401-1424.	3.0	6
18	Coupled Assessment of Fire Behavior and Firebrand Dynamics. Frontiers in Mechanical Engineering, 2021. 7	1.8	9

NICHOLAS S SKOWRONSKI

#	Article	IF	CITATIONS
19	Diurnal Pine Bark Structure Dynamics Affect Properties Relevant to Firebrand Generation. Fire, 2020, 3, 55.	2.8	5
20	Role of Horizontal Eddy Diffusivity within the Canopy on Fire Spread. Atmosphere, 2020, 11, 672.	2.3	5
21	An Improved Approach for Selecting and Validating Burn Severity Indices in Forested Landscapes. Canadian Journal of Remote Sensing, 2020, 46, 100-111.	2.4	13
22	Fire Behavior, Fuel Consumption, and Turbulence and Energy Exchange during Prescribed Fires in Pitch Pine Forests. Atmosphere, 2020, 11, 242.	2.3	16
23	Decomposing the Interactions between Fire Severity and Canopy Fuel Structure Using Multi-Temporal, Active, and Passive Remote Sensing Approaches. Fire, 2020, 3, 7.	2.8	34
24	Prescribed fire science: the case for a refined research agenda. Fire Ecology, 2020, 16, .	3.0	104
25	Fuel Characterization Techniques. , 2020, , 504-513.		Ο
26	The influence of prescribed burning and wildfire on lidar-estimated forest structure of the New Jersey Pinelands National Reserve. International Journal of Wildland Fire, 2020, 29, 1100.	2.4	9
27	Assessing Forest Canopy Impacts on Smoke Concentrations Using a Coupled Numerical Model. Atmosphere, 2019, 10, 273.	2.3	9
28	Fuels Characterization Techniques. , 2018, , 1-10.		2
29	Decadal-Scale Reduction in Forest Net Ecosystem Production Following Insect Defoliation Contrasts with Short-Term Impacts of Prescribed Fires. Forests, 2018, 9, 145.	2.1	24
30	Clarifying the meaning of mantras in wildland fire behaviour modelling: reply to Cruz et al. (2017). International Journal of Wildland Fire, 2018, 27, 770.	2.4	8
31	Local measurements of wildland fire dynamics in a field-scale experiment. Combustion and Flame, 2018, 194, 452-463.	5.2	26
32	Investigation of firebrand generation from an experimental fire: Development of a reliable data collection methodology. Fire Safety Journal, 2017, 91, 864-871.	3.1	60
33	Utilization of remote sensing techniques for the quantification of fire behavior in two pine stands. Fire Safety Journal, 2017, 91, 845-854.	3.1	35
34	High spatial resolution burn severity mapping of the New Jersey Pine Barrens with WorldView-3 near-infrared and shortwave infrared imagery. International Journal of Remote Sensing, 2017, 38, 598-616.	2.9	44
35	A preliminary study of wildland fire pattern indicator reliability following an experimental fire. Journal of Fire Sciences, 2017, 35, 359-378.	2.0	5
36	Investigation of firebrand production during prescribed fires conducted in a pine forest. Proceedings of the Combustion Institute, 2017, 36, 3263-3270.	3.9	50

NICHOLAS S SKOWRONSKI

#	Article	IF	CITATIONS
37	Atmospheric Turbulence Observations in the Vicinity of Surface Fires in Forested Environments. Journal of Applied Meteorology and Climatology, 2017, 56, 3133-3150.	1.5	21
38	Relationships among burn severity, forest canopy structure and bat activity from spring burns in oak–hickory forests. International Journal of Wildland Fire, 2017, 26, 963.	2.4	13
39	Missing Rings, Synchronous Growth, and Ecological Disturbance in a 36-Year Pitch Pine (Pinus rigida) Provenance Study. PLoS ONE, 2016, 11, e0154730.	2.5	17
40	Structure-level fuel load assessment in the wildland–urban interface: a fusion of airborne laser scanning and spectral remote-sensing methodologies. International Journal of Wildland Fire, 2016, 25, 547.	2.4	18
41	Experimental Procedures Characterising Firebrand Generation in Wildland Fires. Fire Technology, 2016, 52, 731-751.	3.0	59
42	Observations of fireâ€induced turbulence regimes during lowâ€intensity wildland fires in forested environments: implications for smoke dispersion. Atmospheric Science Letters, 2015, 16, 453-460.	1.9	26
43	Fire Management and Carbon Sequestration in Pine Barren Forests. Journal of Sustainable Forestry, 2015, 34, 125-146.	1.4	21
44	Multiscale Simulation of a Prescribed Fire Event in the New Jersey Pine Barrens Using ARPS-CANOPY. Journal of Applied Meteorology and Climatology, 2014, 53, 793-812.	1.5	19
45	Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak–pine forest. Remote Sensing of Environment, 2014, 151, 166-174.	11.0	66
46	Climate change and fire management in the mid-Atlantic region. Forest Ecology and Management, 2014, 327, 306-315.	3.2	21
47	The Fire Research Program at the Silas Little Experimental Forest, New Lisbon, New Jersey. , 2014, , 515-534.		4
48	Effects of a prescribed fire on water use and photosynthetic capacity of pitch pines. Trees - Structure and Function, 2013, 27, 1115-1127.	1.9	42
49	Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1703-1714.	3.0	53
50	Effects of invasive insects and fire on forest energy exchange and evapotranspiration in the New Jersey pinelands. Agricultural and Forest Meteorology, 2012, 166-167, 50-61.	4.8	66
51	Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands. Environmental Modelling and Software, 2011, 26, 1112-1122.	4.5	26
52	Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems. Remote Sensing of Environment, 2011, 115, 703-714.	11.0	101
53	Invasive insects impact forest carbon dynamics. Global Change Biology, 2010, 16, 88-101.	9.5	156
54	Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model. Global Change Biology, 2010, 16, 546-560.	9.5	46

#	Article	IF	CITATIONS
55	Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens. International Journal of Wildland Fire, 2009, 18, 268.	2.4	18
56	Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey. Remote Sensing of Environment, 2007, 108, 123-129.	11.0	109
57	An experimental approach to the evaluation of prescribed fire behavior. , 0, , 41-53.		2