Nosang Myung

List of Publications by Citations

Source: https://exaly.com/author-pdf/5172571/nosang-myung-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

7,766 80 215 47 h-index g-index citations papers 8,733 6.04 6.3 240 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
215	Recent progress in carbon nanotube-based gas sensors. <i>Nanotechnology</i> , 2008 , 19, 332001	3.4	482
214	Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. <i>Journal of the American Chemical Society</i> , 2005 , 127, 496-7	16.4	357
213	Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6321-6327	3.8	328
212	Recent progress in electrodeposition of thermoelectric thin films and nanostructures. <i>Electrochimica Acta</i> , 2008 , 53, 8103-8117	6.7	213
211	Individually Addressable Conducting Polymer Nanowires Array. <i>Nano Letters</i> , 2004 , 4, 1237-1239	11.5	213
210	Electrochemically Grown Wires for Individually Addressable Sensor Arrays. <i>Nano Letters</i> , 2004 , 4, 419-4	22 1.5	213
209	Development of electroplated magnetic materials for MEMS. <i>Journal of Magnetism and Magnetic Materials</i> , 2003 , 265, 189-198	2.8	168
208	Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. <i>Analytical Chemistry</i> , 2010 , 82, 250-7	7.8	155
207	Magnetic Alignment of Nanowires. <i>Chemistry of Materials</i> , 2005 , 17, 1320-1324	9.6	147
206	Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. <i>Applied Physics Letters</i> , 2009 , 94, 083502	3.4	144
205	Investigation of a single Pd nanowire for use as a hydrogen sensor. <i>Small</i> , 2006 , 2, 356-8	11	143
204	Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. <i>Analytical Chemistry</i> , 2009 , 81, 2168-75	7.8	140
203	Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5024-6	16.4	136
202	Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3131		122
201	Hybridized conducting polymer chemiresistive nano-sensors. <i>Nano Today</i> , 2013 , 8, 39-55	17.9	110
200	Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. <i>Acta Biomaterialia</i> , 2010 , 6, 2681-9	10.8	106
199	Porphyrins-Functionalized Single-Walled Carbon Nanotubes Chemiresistive Sensor Arrays for VOCs. Journal of Physical Chemistry C, 2012 , 116, 3845-3850	3.8	104

(2010-2007)

198	Poly(m-aminobenzene sulfonic acid) functionalized single-walled carbon nanotubes based gas sensor. <i>Nanotechnology</i> , 2007 , 18, 165504	3.4	103
197	Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20410-5	11.5	100
196	Synthesis of Bi2Te3 nanotubes by galvanic displacement. <i>Journal of the American Chemical Society</i> , 2007 , 129, 10068-9	16.4	98
195	Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 5186-9	16.4	98
194	Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2293-2304	13	92
193	Nano aptasensor for protective antigen toxin of anthrax. <i>Analytical Chemistry</i> , 2010 , 82, 2042-7	7.8	87
192	In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si. <i>Nano Letters</i> , 2008 , 8, 2194-9	11.5	85
191	Tailored synthesis of photoactive TiO Ihanofibers and Au/TiO Ihanofiber composites: structure and reactivity optimization for water treatment applications. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 1654-63	10.3	82
190	Label-free, chemiresistor immunosensor for stress biomarker cortisol in saliva. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 4382-6	11.8	74
189	Transport of iron-based nanoparticles: role of magnetic properties. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 8834-9	10.3	71
188	Field-Effect Transistors Based on Single Nanowires of Conducting Polymers. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 5218-5221	3.8	69
187	Size-controlled electrochemical synthesis and properties of SnO2 nanotubes. <i>Nanotechnology</i> , 2009 , 20, 185602	3.4	68
186	A Nanochannel Fabrication Technique without Nanolithography. <i>Nano Letters</i> , 2003 , 3, 1339-1340	11.5	67
185	Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 1297-301	11.8	64
184	Hierarchical magnetic assembly of nanowires. <i>Nanotechnology</i> , 2007 , 18, 205305	3.4	63
183	Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation. <i>Environmental Science & amp; Technology</i> , 2007 , 41, 4741-7	10.3	63
182	Conducting polymer nanowires-based label-free biosensors. <i>Current Opinion in Biotechnology</i> , 2011 , 22, 502-8	11.4	62
181	Wafer-Scale Fabrication of Single Polypyrrole Nanoribbon-Based Ammonia Sensor. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11103-11108	3.8	60

180	Electrodeposition of PbTe thin films from acidic nitrate baths. <i>Electrochimica Acta</i> , 2006 , 52, 1101-1107	6.7	59
179	Conducting polymer coated single-walled carbon nanotube gas sensors for the detection of volatile organic compounds. <i>Talanta</i> , 2014 , 123, 109-14	6.2	58
178	Sensitive Detection of Elemental Mercury Vapor by Gold Nanoparticle Decorated Carbon Nanotube Sensors. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 13927-13931	3.8	55
177	Janus Evaporators with Self-Recovering Hydrophobicity for Salt-Rejecting Interfacial Solar Desalination. <i>ACS Nano</i> , 2020 ,	16.7	54
176	Synthesis and optimization of FeDIhanofibers for chromate adsorption from contaminated water sources. <i>Chemosphere</i> , 2016 , 144, 975-81	8.4	53
175	Hybrid tin oxide-SWNT nanostructures based gas sensor. <i>Electrochimica Acta</i> , 2013 , 92, 484-490	6.7	53
174	Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes. <i>Nanotechnology</i> , 2010 , 21, 75502	3.4	52
173	Magnetically assembled 30 nm diameter nickel nanowire with ferromagnetic electrodes. <i>Nanotechnology</i> , 2006 , 17, 2512-7	3.4	52
172	Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application. <i>Talanta</i> , 2007 , 74, 370-5	6.2	52
171	Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSiBi. <i>Applied Physics Letters</i> , 2007 , 90, 253111	3.4	51
170	Thermoelectric characteristics of Sb2Te3 thin films formed via surfactant-assisted electrodeposition. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5430	13	47
169	Synthesis and characterization of cadmium telluride nanowire. <i>Nanotechnology</i> , 2008 , 19, 325711	3.4	47
168	Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. <i>Analytical Methods</i> , 2013 , 5, 3497	3.2	46
167	Biogenic formation of As-S nanotubes by diverse Shewanella strains. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 6896-9	4.8	46
166	As(V) remediation using electrochemically synthesized maghemite nanoparticles. <i>Journal of Nanoparticle Research</i> , 2009 , 11, 1981-1989	2.3	45
165	Synthesis, Optimization, and Performance Demonstration of Electrospun Carbon Nanofiber-Carbon Nanotube Composite Sorbents for Point-of-Use Water Treatment. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2016 , 8, 11431-40	9.5	45
164	A Rapid Room-Temperature NO2 Sensor Based on Tellurium BWNT Hybrid Nanostructures. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20067-20074	3.8	43
163	Single-walled carbon nanotube chemoresistive label-free immunosensor for salivary stress biomarkers. <i>Analyst, The</i> , 2010 , 135, 2637-42	5	41

(2014-2014)

1	162	Electrospun Polyaniline/Poly(ethylene oxide) Composite Nanofibers Based Gas Sensor. <i>Electroanalysis</i> , 2014 , 26, 711-722	3	40	
1	161	Synthesis and optimization of Ag-TiO2 composite nanofibers for photocatalytic treatment of impaired water sources. <i>Journal of Hazardous Materials</i> , 2015 , 299, 141-8	12.8	40	
1	160	A gas nanosensor unaffected by humidity. <i>Nanotechnology</i> , 2009 , 20, 255501	3.4	40	
1	159	Functionalized polymer-iron oxide hybrid nanofibers: Electrospun filtration devices for metal oxyanion removal. <i>Water Research</i> , 2017 , 117, 207-217	12.5	39	
1	158	Palladium/single-walled carbon nanotube back-to-back Schottky contact-based hydrogen sensors and their sensing mechanism. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 319-26	9.5	39	
1	157	Gas Sensing Mechanism of Gold Nanoparticles Decorated Single-Walled Carbon Nanotubes. <i>Electroanalysis</i> , 2011 , 23, 2687-2692	3	39	
1	156	Composition-dependent sensing mechanism of electrospun conductive polymer composite nanofibers. <i>Sensors and Actuators B: Chemical</i> , 2015 , 207, 235-242	8.5	38	
1	155	Label-free chemiresistive immunosensors for viruses. <i>Environmental Science & Environmental Science & </i>	10.3	38	
1	154	Single Conducting Polymer Nanowire Based Sequence-Specific, Base-Pair-Length Dependant Label-free DNA Sensor. <i>Electroanalysis</i> , 2011 , 23, 371-379	3	36	
1	153	One-dimensional nanostructures based bio-detection. <i>Biosensors and Bioelectronics</i> , 2015 , 63, 432-443	11.8	35	
1	152	Effect of (L:D) Aspect Ratio on Single Polypyrrole Nanowire FET Device. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13375-13380	3.8	35	
1	151	Conducting polymer 1-dimensional nanostructures for FET sensors. <i>Thin Solid Films</i> , 2010 , 519, 964-973	2.2	35	
1	150	Enhanced electrical and mechanical properties of silver nanoplatelet-based conductive features direct printed on a flexible substrate. <i>ACS Applied Materials & District Science</i> , 2013, 5, 5908-13	9.5	34	
1	149	Fabrication of DNA-templated Te and Bi2Te3 nanowires by galvanic displacement. <i>Langmuir</i> , 2013 , 29, 11176-84	4	34	
1	148	Branched tellurium hollow nanofibers by galvanic displacement reaction and their sensing performance toward nitrogen dioxide. <i>Nanoscale</i> , 2013 , 5, 3058-62	7.7	33	
1	147	Nanopeapods by galvanic displacement reaction. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7081-5	16.4	33	
1	146	Maximizing thermoelectric properties by nanoinclusion of ⊞bTe in Sb2Te3 film via solid-state phase transition from amorphous Sb∏e electrodeposits. <i>Nano Energy</i> , 2015 , 13, 727-734	17.1	32	
1	145	Highly sensitive hydrogen sulfide (HB) gas sensors from viral-templated nanocrystalline gold nanowires. <i>Nanotechnology</i> , 2014 , 25, 135205	3.4	32	

144	Selective and Rapid Room Temperature Detection of H2S Using Gold Nanoparticle Chain Arrays. <i>Electroanalysis</i> , 2011 , 23, 2623-2628	3	32
143	Electrodeposition of antimony telluride thin films from acidic nitrate-tartrate baths. <i>Electrochimica Acta</i> , 2011 , 56, 5611-5615	6.7	32
142	Thermoelectric Properties of Ultralong Silver Telluride Hollow Nanofibers. <i>Chemistry of Materials</i> , 2015 , 27, 5189-5197	9.6	31
141	Polyaniline/poly(Eaprolactone) composite electrospun nanofiber-based gas sensors: optimization of sensing properties by dopants and doping concentration. <i>Nanotechnology</i> , 2014 , 25, 115501	3.4	31
140	Synthesis of hierarchical MoO/MoS nanofibers for electrocatalytic hydrogen evolution. <i>Nanotechnology</i> , 2017 , 28, 105605	3.4	28
139	Metal nanoparticles and DNA co-functionalized single-walled carbon nanotube gas sensors. Nanotechnology, 2013, 24, 505502	3.4	28
138	Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1451-5	11.8	28
137	Synthesis of tellurium nanotubes by galvanic displacement. <i>Electrochimica Acta</i> , 2010 , 55, 2472-2476	6.7	28
136	Synthesis and optimization of BiVO4 and co-catalyzed BiVO4 nanofibers for visible light-activated photocatalytic degradation of aquatic micropollutants. <i>Journal of Molecular Catalysis A</i> , 2015 , 404-405, 18-26		27
135	Electro-transport studies of electrodeposited (Bi1\(\mathbb{B}\)Sbx)2Te3nanowires. <i>Nanotechnology</i> , 2007 , 18, 335	2634	27
134	Synthesis of ultra-long hollow chalcogenide nanofibers. <i>Chemical Communications</i> , 2011 , 47, 9107-9	5.8	26
133	Inkjet printed transparent conductive films using water-dispersible single-walled carbon nanotubes treated by UV/ozone irradiation. <i>Thin Solid Films</i> , 2013 , 536, 160-165	2.2	24
133		2.2 9.6	24
	treated by UV/ozone irradiation. <i>Thin Solid Films</i> , 2013 , 536, 160-165 Controlled Growth of a Single Palladium Nanowire between Microfabricated Electrodes. <i>Chemistry</i>		
132	treated by UV/ozone irradiation. <i>Thin Solid Films</i> , 2013 , 536, 160-165 Controlled Growth of a Single Palladium Nanowire between Microfabricated Electrodes. <i>Chemistry of Materials</i> , 2004 , 16, 4955-4959 Investigation of shape controlled silver nanoplates by a solvothermal process. <i>Journal of Colloid</i>	9.6	24
132	treated by UV/ozone irradiation. <i>Thin Solid Films</i> , 2013 , 536, 160-165 Controlled Growth of a Single Palladium Nanowire between Microfabricated Electrodes. <i>Chemistry of Materials</i> , 2004 , 16, 4955-4959 Investigation of shape controlled silver nanoplates by a solvothermal process. <i>Journal of Colloid and Interface Science</i> , 2010 , 342, 8-17 Performance comparison of hematite (FeO)-polymer composite and core-shell nanofibers as	9.6	24
132 131 130	treated by UV/ozone irradiation. <i>Thin Solid Films</i> , 2013 , 536, 160-165 Controlled Growth of a Single Palladium Nanowire between Microfabricated Electrodes. <i>Chemistry of Materials</i> , 2004 , 16, 4955-4959 Investigation of shape controlled silver nanoplates by a solvothermal process. <i>Journal of Colloid and Interface Science</i> , 2010 , 342, 8-17 Performance comparison of hematite (FeO)-polymer composite and core-shell nanofibers as point-of-use filtration platforms for metal sequestration. <i>Water Research</i> , 2019 , 148, 492-503 Ni-based Plasmonic/Magnetic Nanostructures as Efficient Light Absorbers for Steam Generation.	9.6 9.3 12.5	24 23 23

(2011-2006)

126	Controlled assembly of multi-segment nanowires by histidine-tagged peptides. <i>Nanotechnology</i> , 2006 , 17, 3375-9	3.4	21	
125	A noble gas sensor platform: linear dense assemblies of single-walled carbon nanotubes (LACNTs) in a multi-layered ceramic/metal electrode system (MLES). <i>Journal of Materials Chemistry C</i> , 2018 , 6, 9	72-979	21	
124	Thermochemical hydrogen sensor based on chalcogenide nanowire arrays. <i>Nanotechnology</i> , 2015 , 26, 145503	3.4	20	
123	Electrodeposition of Single-Crystal Cubes of Lead Telluride on Polycrystalline Gold Substrate. Journal of Physical Chemistry C, 2007, 111, 11397-11402	3.8	20	
122	Transformative piezoelectric enhancement of P(VDF-TrFE) synergistically driven by nanoscale dimensional reduction and thermal treatment. <i>Nanoscale</i> , 2018 , 10, 2894-2901	7.7	19	
121	1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100271	6.4	19	
120	Simple and effective fabrication of Sb2Te3 films embedded with Ag2Te nanoprecipitates for enhanced thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 349-356	13	19	
119	Composition- and crystallinity-dependent thermoelectric properties of ternary BixSb2-xTey films. <i>Applied Surface Science</i> , 2018 , 429, 158-163	6.7	18	
118	Viral-templated gold/polypyrrole nanopeapods for an ammonia gas sensor. <i>Nanotechnology</i> , 2016 , 27, 325502	3.4	18	
117	Electrodeposited Single Crystalline PbTe Nanowires and Their Transport Properties. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2993-2998	3.8	18	
116	Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO nanomatrix and boronic acid functionalized CPS@PANI@Au probe. <i>Talanta</i> , 2021 , 225, 122006	6.2	18	
115	Hybrid ZnO/SWNT Nanostructures Based Gas Sensor. <i>Electroanalysis</i> , 2012 , 24, 1613-1620	3	17	
114	Synthesis of Sn doped CuO nanotubes from core-shell Cu/SnO(2) nanowires by the Kirkendall effect. <i>Nanotechnology</i> , 2010 , 21, 295601	3.4	17	
113	Bi and Te thin films synthesized by galvanic displacement from acidic nitric baths. <i>Electrochimica Acta</i> , 2010 , 55, 743-752	6.7	17	
112	Magnetically Assembled Multiwalled Carbon Nanotubes on Ferromagnetic Contacts <i>Journal of Physical Chemistry B</i> , 2004 , 108, 19818-19824	3.4	17	
111	Synthesis of Samarium-Cobalt Sub-micron Fibers and Their Excellent Hard Magnetic Properties. <i>Frontiers in Chemistry</i> , 2018 , 6, 18	5	16	
110	Electronic-nose for detecting environmental pollutants: signal processing and analog front-end design. <i>Analog Integrated Circuits and Signal Processing</i> , 2012 , 70, 15-32	1.2	16	
109	Electrodeposition of p-Type Sb x Te y Thermoelectric Films. <i>Journal of Electronic Materials</i> , 2011 , 40, 1321-1325	1.9	16	

108	Three-dimensional alumina nanotemplate. <i>Electrochimica Acta</i> , 2006 , 51, 3543-3550	6.7	16
107	Electrospun hydrogen manganese oxide nanofibers as effective adsorbents for Li+ recovery from seawater. <i>Journal of Industrial and Engineering Chemistry</i> , 2020 , 81, 115-123	6.3	16
106	Size-Dependent Piezoelectric Properties of Electrospun BaTiO3 for Enhanced Energy Harvesting. <i>Advanced Sustainable Systems</i> , 2017 , 1, 1700091	5.9	15
105	Surfactant-assisted fabrication of porous polymeric nanofibers with surface-enriched iron oxide nanoparticles: composite filtration materials for removal of metal cations. <i>Environmental Science: Nano,</i> 2018 , 5, 669-681	7.1	15
104	Tuning Electrical and Optoelectronic Properties of Single Cadmium Telluride Nanoribbon. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 9202-9208	3.8	15
103	Tuning the gas sensing performance of single PEDOT nanowire devices. <i>Analyst, The</i> , 2011 , 136, 2350-8	5	15
102	Galvanic displacement of BixTey thin films from sacrificial iron group thin films. <i>Electrochimica Acta</i> , 2010 , 55, 1072-1080	6.7	15
101	Polarization-Modulated Multidirectional Photothermal Actuators. <i>Advanced Materials</i> , 2021 , 33, e20063	67	15
100	Mesoporous TiO2 nanospheres loaded with highly dispersed Pd nanoparticles for pH-universal hydrogen evolution reaction. <i>Materials Today Nano</i> , 2019 , 6, 100038	9.7	14
99	Tin Dioxide Functionalized Single-Walled Carbon Nanotube (SnO2/SWNT)-Based Ammonia Gas Sensors and Their Sensing Mechanism. <i>Journal of the Electrochemical Society</i> , 2014 , 161, B283-B290	3.9	14
98	Site-Specific Magnetic Assembly of Nanowires for Sensor Arrays Fabrication. <i>IEEE Nanotechnology Magazine</i> , 2008 , 7, 251-255	2.6	14
97	Electrospun hematite nanofiber/mesoporous silica core/shell nanomaterials as an efficient adsorbent for heavy metals. <i>RSC Advances</i> , 2016 , 6, 90516-90525	3.7	14
96	Electrodeposition of Compact Tellurium Thick Films from Alkaline Baths. <i>Journal of the Electrochemical Society</i> , 2017 , 164, D82-D87	3.9	13
95	Chemiresistive hydrogen gas sensors from gold-palladium nanopeapods. <i>Applied Physics Letters</i> , 2014 , 105, 223102	3.4	12
94	Effect of UV/ozone treatment on interactions between ink-jet printed Cu patterns and polyimide substrates. <i>Thin Solid Films</i> , 2011 , 519, 6853-6857	2.2	12
93	Simple electrochemical synthesis of ultra-long silver telluride nanotubes. <i>RSC Advances</i> , 2015 , 5, 29782-	2 <u>9</u> 785	11
92	Synthesis and characterization of orthorhombic-MoO3 nanofibers with controlled morphology and diameter. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 62, 231-238	6.3	11
91	Optimization of Thermoelectric Properties of p-type AgSbTe2 Thin Films via Electrochemical Synthesis. <i>Electrochimica Acta</i> , 2016 , 196, 579-586	6.7	11

(2007-2018)

90	Minimizing the Diameter of Electrospun Polyacrylonitrile (PAN) Nanofibers by Design of Experiments for Electrochemical Application. <i>Electroanalysis</i> , 2018 , 30, 2330-2338	3	11
89	Synthesis of Tellurium Heterostructures by Galvanic Displacement Reaction of Zinc in Alkaline Baths. <i>Electrochimica Acta</i> , 2014 , 150, 298-307	6.7	11
88	Tunable synthesis of cuprous and cupric oxide nanotubes from electrodeposited copper nanowires. Journal of Nanoscience and Nanotechnology, 2011 , 11, 1455-8	1.3	11
87	Enzyme mediated synthesis of phytochelatin-capped CdS nanocrystals. <i>Applied Physics Letters</i> , 2010 , 97, 123703	3.4	11
86	Peptide directed synthesis of silica coated gold nanocables. <i>Chemical Communications</i> , 2010 , 46, 4366-8	3 5.8	11
85	Fabrication of nanoelectrodes and nanojunction hydrogen sensor. <i>Applied Physics Letters</i> , 2008 , 93, 133	1314	11
84	Modulation of piezoelectric properties in electrospun PLLA nanofibers for application-specific self-powered stem cell culture platforms. <i>Nano Energy</i> , 2021 , 89, 106444	17.1	11
83	Size Controlled Synthesis of Tellurium Nanorices by Galvanic Displacement Reaction of Aluminum. <i>Electrochimica Acta</i> , 2015 , 176, 1382-1392	6.7	10
82	Whispering gallery mode emission from dye-doped polymer fiber cross-sections fabricated by near-field electrospinning. <i>Nanoscale</i> , 2020 , 12, 9873-9883	7.7	10
81	Template-free synthesis of vertically oriented tellurium nanowires via a galvanic displacement reaction. <i>Electrochimica Acta</i> , 2013 , 111, 200-205	6.7	10
80	Programmable synthesis of shape-, structure-, and composition-modulated one-dimensional heterostructures by galvanic displacement reaction. <i>Applied Physics Letters</i> , 2012 , 100, 223105	3.4	10
79	Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. <i>Science Robotics</i> , 2021 , 6, eabi4523	18.6	10
78	One-pot synthesis of gradient interface quaternary ZnCdSSe quantum dots. <i>Applied Surface Science</i> , 2017 , 415, 19-23	6.7	9
77	Single-crystalline CoFe nanoparticles encapsulated in N-doped carbon nanotubes as a bifunctional catalyst for water splitting. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 2307-2313	7.8	9
76	Diameter and composition modulated bismuth telluride nanowires by galvanic displacement reaction of segmented NiFe nanowires. <i>Electrochimica Acta</i> , 2012 , 75, 201-207	6.7	9
75	Growth factors for silver nanoplates formed in a simple solvothermal process. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 3393-6	1.3	9
74	Nanopeapods by Galvanic Displacement Reaction. <i>Angewandte Chemie</i> , 2010 , 122, 7235-7239	3.6	9
73	Electrochemical synthesis of compositionally modulated NiFe nanowires. <i>Physica Status Solidi (A)</i> Applications and Materials Science, 2007 , 204, 4021-4024	1.6	9

72	Modeling the effect of etch holes on ferromagnetic MEMS. <i>IEEE Transactions on Magnetics</i> , 2001 , 37, 2637-2639	2	9
71	Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells. <i>Frontiers in Chemistry</i> , 2020 , 8, 620153	5	9
70	Physico-electrochemical Characterization of Pluripotent Stem Cells during Self-Renewal or Differentiation by a Multi-modal Monitoring System. <i>Stem Cell Reports</i> , 2017 , 8, 1329-1339	8	8
69	DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and HO. <i>Journal of Biotechnology</i> , 2017 , 263, 30-35	3.7	8
68	Inorganic nanofiber as a promising sorbent for lithium recovery. <i>Separation and Purification Technology</i> , 2020 , 242, 116757	8.3	8
67	Evaluation of Strength Development in Concrete with Ground Granulated Blast Furnace Slag Using Apparent Activation Energy. <i>Materials</i> , 2020 , 13,	3.5	8
66	Morphology change of galvanically displaced one-dimensional tellurium nanostructures via controlling the microstructure of sacrificial Ni thin films. <i>Electrochimica Acta</i> , 2013 , 106, 447-452	6.7	8
65	Electrodeposition of BixTey thin films for thermoelectric application. <i>Thin Solid Films</i> , 2013 , 546, 48-52	2.2	8
64	Synthesis and thermoelectric/electrical characterization of electrodeposited SbxTey thin films. <i>Materials Research Bulletin</i> , 2012 , 47, 2748-2751	5.1	8
63	Utilization of a magnetic field-driven microscopic motion for piezoelectric energy harvesting. <i>Nanoscale</i> , 2019 , 11, 20527-20533	7.7	8
62	Electrospun Cobalt-Doped MoS2 Nanofibers for Electrocatalytic Hydrogen Evolution. <i>Journal of the Electrochemical Society</i> , 2019 , 166, F996-F999	3.9	7
61	Silver content dependent thermal conductivity and thermoelectric properties of electrodeposited antimony telluride thin films. <i>Scientific Reports</i> , 2019 , 9, 9242	4.9	7
60	Galvanically Displaced Ultralong PbxSeyNiz Hollow Nanofibers with High Thermopower. <i>Chemistry of Materials</i> , 2014 , 26, 2557-2566	9.6	7
59	Effect of calcination temperature on the photocatalytic properties of electrospun TiO2 nanofibers. Journal of Nanoscience and Nanotechnology, 2014 , 14, 8005-9	1.3	7
58	Electrochemical synthesis of CdTe/SWNT hybrid nanostructures and their tunable electrical and optoelectrical properties. <i>Nanoscale</i> , 2013 , 5, 1616-23	7.7	7
57	Tapered BiTe nanowires synthesis by galvanic displacement reaction of compositionally modulated NiFe nanowires. <i>Electrochimica Acta</i> , 2013 , 90, 582-588	6.7	7
56	Synthesis of chalcogenide ternary and quaternary nanotubes through directed compositional alterations of bacterial AsB nanotubes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10277		7
55	Mechano-Responsive Piezoelectric Nanofiber as an On-Demand Drug Delivery Vehicle <i>ACS Applied Bio Materials</i> , 2021 , 4, 3706-3715	4.1	7

54	Nanoengineering Approaches Toward Artificial Nose. Frontiers in Chemistry, 2021, 9, 629329	5	7
53	Fabrication and sensing property for conducting polymer nanowire-based biosensor for detection of immunoglobulin G. <i>Research on Chemical Intermediates</i> , 2014 , 40, 2565-2570	2.8	6
52	Plasmon-Enhanced Oxygen Evolution Catalyzed by Fe2N-Embedded TiOxNy Nanoshells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 146-151	6.1	6
51	Phosphate removal using surface enriched hematite and tetra-n-butylammonium bromide incorporated polyacrylonitrile composite nanofibers. <i>Science of the Total Environment</i> , 2021 , 770, 1453	64 ^{0.2}	6
50	Electrodeposition of Dense Lead Telluride Thick Films in Alkaline Solutions. <i>Journal of the Electrochemical Society</i> , 2016 , 163, D801-D808	3.9	6
49	Synthesis and Thermoelectric Characterization of Lead Telluride Hollow Nanofibers. <i>Frontiers in Chemistry</i> , 2018 , 6, 436	5	6
48	Promotion Effect of Modified Ni/C by Latte Oxide for Durable Hydrogen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 12508-12513	8.3	6
47	Three-dimensional hierarchical Te-Si nanostructures. <i>Nanoscale</i> , 2014 , 6, 11697-702	7.7	5
46	Synthesis of nanoparticles with frog foam nest proteins. Journal of Nanoparticle Research, 2012, 14, 1	2.3	5
45	Structural evolution of AgAu nanoplates by pH controlled galvanic displacement. <i>Current Applied Physics</i> , 2012 , 12, S53-S58	2.6	5
44	Electrical/thermoelectric characterization of electrodeposited Bi x Sb2\(\mathbb{Z}\) Te3 thin films. <i>Electronic Materials Letters</i> , 2013 , 9, 687-691	2.9	5
43	Application of Low-Cost, Easy-to-Use, Portable Biosensor Systems for Diagnosing Bladder Dysfunctions. <i>International Neurourology Journal</i> , 2019 , 23, 86-87	2.6	5
42	Optimizing thermoelectric property of antimony telluride nanowires by tailoring composition and crystallinity. <i>Materials Research Express</i> , 2015 , 2, 085006	1.7	4
41	Phase-dependent thermal conductivity of electrodeposited antimony telluride films. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3410-3416	7.1	4
40	Synthesis and thermoelectric characterization of bulk-type tellurium nanowire/polymer nanocomposites. <i>Journal of Materials Science</i> , 2017 , 52, 12724-12733	4.3	4
39	Synthesis of PbTe and PbTe/Te Nanostructures by Galvanic Displacement of Cobalt Thin Films. <i>Electrochimica Acta</i> , 2014 , 138, 334-340	6.7	4
38	Lithographically Patterned p-Type SbxTey Nanoribbons with Controlled Morphologies and Dimensions. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 17303-17308	3.8	4
37	Chemiresistive sensor arrays for detection of air pollutants based on carbon nanotubes functionalized with porphyrin and phthalocyanine derivatives. <i>Sensors and Actuators Reports</i> , 2020 , 2, 100011	4.7	4

36	Formation of 3D Self-Organized Neuron-Glial Interface Derived from Neural Stem Cells via Mechano-Electrical Stimulation. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100806	10.1	4
35	A Method for Optimizing the Design of Heterogeneous Nano Gas Chemiresistor Arrays. <i>Electroanalysis</i> , 2019 , 31, 1009-1018	3	3
34	Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide. <i>Bioscience, Biotechnology and Biochemistry</i> , 2016 , 80, 1478-83	2.1	3
33	Synthesis of macro-mesoporous Pt/alumina catalyst to enhance catalytic activity of hydrogen oxidation. <i>Electronic Materials Letters</i> , 2012 , 8, 225-230	2.9	3
32	Mesoporous ?-Alumina/Hematite (?-Al2O3/Fe2O3) Composite Nanofibers for Heavy Metal Removal. <i>Science of Advanced Materials</i> , 2017 , 9, 22-29	2.3	3
31	Template-Free Electrochemical Deposition of t-Se Nano- and Sub-micro Structures With Controlled Morphology and Dimensions. <i>Frontiers in Chemistry</i> , 2020 , 8, 785	5	3
30	L-Arginine-Incorporated Cement Mortar as Sustainable Artificial Reefs. Sustainability, 2020, 12, 6346	3.6	3
29	CarbonEitanium dioxide (C/TiO2) nanofiber composites for chemical oxidation of emerging organic contaminants in reactive filtration applications. <i>Environmental Science: Nano</i> , 2021 , 8, 711-722	7.1	3
28	Highly stable potentiometric sensor with reduced graphene oxide aerogel as a solid contact for detection of nitrate and calcium ions. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 897, 115553	4.1	3
27	Comprehensive Review on Thermoelectric Electrodeposits: Enhancing Thermoelectric Performance Through Nanoengineering <i>Frontiers in Chemistry</i> , 2021 , 9, 762896	5	3
26	Morphological Evolution of Te and Bi2Te3 Microstructures during Galvanic Displacement of Electrodeposited Co Thin Films. <i>Electrochimica Acta</i> , 2017 , 255, 1-8	6.7	2
25	Electrochemical Mechanism of Tellurium Reduction in Alkaline Medium. <i>Frontiers in Chemistry</i> , 2020 , 8, 84	5	2
24	Synthesis and magneto-transport properties of single PEDOT/Ni and PEDOT/Ni30Fe70 core/shell nanowires. <i>Electrochimica Acta</i> , 2011 , 56, 5561-5565	6.7	2
23	Single-walled carbon nanotubes based chemicapacitive sensors. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 1517-20	1.3	2
22	A real-time monitoring system for diesel and gasoline exhaust exposure 2009,		2
21	Piezo-photocatalytic flexible PAN/TiO composite nanofibers for environmental remediation <i>Science of the Total Environment</i> , 2022 , 153790	10.2	2
20	Te-Embedded Nanocrystalline PbTe Thick Films: Structure and Thermoelectric Properties Relationship. <i>Coatings</i> , 2021 , 11, 356	2.9	2
19	Synthesis of Platinum and Tin Oxide Co-functionalized Single-walled Carbon Nanotubes (Pt/SnO2/SWNTs) and their Sensing Properties toward Carbon Monoxide. <i>Electroanalysis</i> , 2019 , 31, 437	-447	2

18	Electrospun Hybrid MoS2 Nanofibers for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 066522	3.9	2
17	Electrospun organic piezoelectric nanofibers and their energy and bio applications. <i>Nano Energy</i> , 2022 , 97, 107174	17.1	2
16	Facile Control of Interfacial Energy-Barrier Scattering in Antimony Telluride Electrodeposits. <i>Journal of Electronic Materials</i> , 2017 , 46, 2347-2355	1.9	1
15	Controlled growth of gold nanocrystals on biogenic As-S nanotubes by galvanic displacement. <i>Nanotechnology</i> , 2018 , 29, 055604	3.4	1
14	Template-Directed Electrodeposition of Iron-Palladium Nanowires and Their Electrical Transport and Sensing Properties. <i>Journal of the Electrochemical Society</i> , 2017 , 164, D1045-D1050	3.9	1
13	Invited paper: Composition-dependent electrical properties of ternary AgxSb1\(\mathbb{I}\)Tey thin films synthesized by cationic exchange reaction. <i>Electronic Materials Letters</i> , 2012 , 8, 219-224	2.9	1
12	Coupling of 3D Porous Hosts for Li Metal Battery Anodes with Viscous Polymer Electrolytes. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 010511	3.9	1
11	Synthesis of gold nanostructures using glycine as the reducing agent. <i>Nanotechnology</i> , 2020 , 31, 45560	13.4	1
10	Bamboo-like Te Nanotubes with Tailored Dimensions Synthesized from Segmental NiFe Nanowires as Sacrificial Templates. <i>Bulletin of the Korean Chemical Society</i> , 2014 , 35, 3227-3231	1.2	1
9	Magneto- and opto-stimuli responsive nanofibers as a controlled drug delivery system. <i>Nanotechnology</i> , 2021 , 32,	3.4	1
8	Near-field electrospinning of polymer/phage whispering gallery mode microfiber resonators for label-free biosensing. <i>Sensors and Actuators B: Chemical</i> , 2022 , 367, 132062	8.5	1
7	Hierarchically palladium nanoparticles embedded polyethyleneiminelleduced graphene oxide aerogel (RGABEIBd) porous electrodes for electrochemical detection of bisphenol a and H2O2. <i>Chemical Engineering Journal</i> , 2022 , 431, 134250	14.7	O
6	Galvanic displacement reaction of nickel to form one-dimensional trigonal tellurium structures in acidic solutions. <i>Electrochimica Acta</i> , 2020 , 330, 135144	6.7	0
5	Multiplexed Anodic Stripping Voltammetry Detection of Heavy Metals in Water Using Nanocomposites Modified Screen-Printed Electrodes Integrated With a 3D-Printed Flow Cell <i>Frontiers in Chemistry</i> , 2022 , 10, 815805	5	O
4	Ultralight electrospun fiber foam with tunable lamellar macropores for efficient interfacial evaporation. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107522	6.8	O
3	Conducting Polymer Nanowire-Based Bio-Field Effect Transistor for Label-Free Detection 2018 , 149-16	4	
2	Aqueous Electrodeposition of SmCo Alloys: II. Direct Current Studies. <i>Frontiers in Chemistry</i> , 2021 , 9, 694726	5	
1	Interfacial prediction and tensile damage tracking of carbon fiber reinforced polyamide 66 using Z-axis electrical resistance method. <i>Composites Science and Technology</i> , 2022 , 223, 109444	8.6	