Li-Kang Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/517221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the thickness of silica layer on the radiative relaxation of <scp>AuNR</scp> @ <scp>SiO₂</scp> core–shell nanostructures upon photoexcitation. Journal of the Chinese Chemical Society, 2022, 69, 73-81.	0.8	2
2	Rapid preparation of gaseous methanediol (CH ₂ (OH) ₂). Chemical Communications, 2022, 58, 4208-4210.	2.2	9
3	Protein dynamics of human serum albumin at hypothermic temperatures investigated by temperature jump. Physical Chemistry Chemical Physics, 2022, 24, 11079-11085.	1.3	3
4	Roles of functional lipids in bacteriorhodopsin photocycle in various delipidated purple membranes. Biophysical Journal, 2022, 121, 1789-1798.	0.2	2
5	Time-resolved Infrared Characterization on the Photolysis of Roussin's Red Phenyl Ester in Different Solvents. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 113032.	2.0	2
6	Tier-O protein dynamics of bovine serum albumin: A kinetics and energetics study of the collective domain motions. Chemical Physics Letters, 2021, 762, 138102.	1.2	6
7	Gaseous infrared spectra of the simplest geminal diol CH ₂ (OH) ₂ and the isotopic analogues in the hydration of formaldehyde. Physical Chemistry Chemical Physics, 2021, 23, 14699-14705.	1.3	17
8	Differentiating the protein dynamics using fluorescence evolution of tryptophan residue(s): A comparative study of bovine and human serum albumins upon temperature jump. Chemical Physics Letters, 2021, 781, 138998.	1.2	20
9	Radiative Relaxation of Gold Nanorods Coated with Mesoporous Silica with Different Porosities upon Nanosecond Photoexcitation Monitored by Time-Resolved Infrared Emission Spectroscopy. ACS Applied Materials & Interfaces, 2021, 13, 60018-60026.	4.0	5
10	Infrared Spectroscopic and Kinetic Characterization on the Photolysis of Nitrite in Alcohol-Containing Aqueous Solutions. Journal of Physical Chemistry A, 2020, 124, 3904-3914.	1.1	4
11	Influence of Lipid Compositions in the Events of Retinal Schiff Base of Bacteriorhodopsin Embedded in Covalently Circularized Nanodiscs: Thermal Isomerization, Photoisomerization, and Deprotonation. Journal of Physical Chemistry B, 2019, 123, 9123-9133.	1.2	4
12	Reply to "Comment on â€~Does Tetrahydrofuran (THF) Behave like a Solvent or a Reactant in the Photolysis of Thionyl Chloride (Cl2SO) in Cyclohexane? A Transient Infrared Difference Study'― Journal of Physical Chemistry A, 2019, 123, 7895-7895.	1.1	0
13	Extracting the protein dynamics of bovine serum albumin in the native condition using confocal fluorescent temperature jump. Journal of Applied Physics, 2019, 125, 084701.	1.1	5
14	Photochemistry of Bacteriorhodopsin with Various Oligomeric Statuses in Controlled Membrane Mimicking Environments: A Spectroscopic Study from Femtoseconds to Milliseconds. Journal of Physical Chemistry B, 2019, 123, 2032-2039.	1.2	4
15	Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting. Dalton Transactions, 2018, 47, 7128-7134.	1.6	10
16	Spatially and temporally-resolved tryptophan fluorescence thermometry for monitoring the photothermal processes of gold nanorod suspensions. Sensors and Actuators B: Chemical, 2018, 255, 1285-1290.	4.0	7
17	Thermographic Detection and Analysis of the Temporal and Spatial Evolution of Temperature upon Optical Heating of Gold Nanorod Assembly Immobilized in Agar. ACS Omega, 2018, 3, 16960-16968.	1.6	2
18	Highly Efficient Transfer of 7TM Membrane Protein from Native Membrane to Covalently Circularized Nanodisc. Scientific Reports, 2018, 8, 13501.	1.6	14

LI-KANG CHU

#	Article	IF	CITATIONS
19	Does Tetrahydrofuran (THF) Behave like a Solvent or a Reactant in the Photolysis of Thionyl Chloride (Cl ₂ SO) in Cyclohexane? A Transient Infrared Difference Study. Journal of Physical Chemistry A, 2018, 122, 5401-5408.	1.1	7
20	Radiative Cooling of Surface-Modified Gold Nanorods upon Pulsed Infrared Photoexcitation. Journal of Physical Chemistry Letters, 2018, 9, 5110-5115.	2.1	4
21	Molecular Design of Highly Efficient Thermally Activated Delayed Fluorescence Hosts for Blue Phosphorescent and Fluorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 1527-1537.	3.2	85
22	Distance-Dependent Excited-State Electron Transfer from Tryptophan to Gold Nanoparticles through Polyproline Helices. Journal of Physical Chemistry C, 2017, 121, 4882-4890.	1.5	6
23	Using SiO ₂ -Coated Gold Nanorods as Temperature Jump Photothermal Convertors Coupled with a Confocal Fluorescent Thermometer to Study Protein Unfolding Kinetics: A Case of Bovine Serum Albumin. Journal of Physical Chemistry C, 2017, 121, 14981-14989.	1.5	9
24	Monitoring the Transient Thermal Infrared Emission of Gold Nanoparticles upon Photoexcitation with a Step-Scan Fourier-Transform Spectrometer. Journal of Physical Chemistry C, 2017, 121, 878-885.	1.5	8
25	Lipids influence the proton pump activity of photosynthetic protein embedded in nanodiscs. RSC Advances, 2016, 6, 88300-88305.	1.7	12
26	Wavelength-dependent photocycle activity of xanthorhodopsin in the visible region. Biochemistry and Biophysics Reports, 2016, 7, 347-352.	0.7	0
27	A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. Journal of the American Chemical Society, 2016, 138, 628-634.	6.6	365
28	Quantifying the photothermal efficiency of gold nanoparticles using tryptophan as an in situ fluorescent thermometer. Physical Chemistry Chemical Physics, 2015, 17, 17090-17100.	1.3	26
29	Effects of the Terminal Aromatic Residues on Polyproline Conformation: Thermodynamic and Kinetic Studies. Journal of Physical Chemistry B, 2015, 119, 15796-15806.	1.2	15
30	Tuning the Photocycle Kinetics of Bacteriorhodopsin in Lipid Nanodiscs. Biophysical Journal, 2015, 109, 1899-1906.	0.2	24
31	Development of a Dinitrosyl Iron Complex Molecular Catalyst into a Hydrogen Evolution Cathode. Angewandte Chemie - International Edition, 2015, 54, 14824-14829.	7.2	32
32	A high triplet energy, high thermal stability oxadiazole derivative as the electron transporter for highly efficient red, green and blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 1491-1496.	2.7	61
33	Analyzing a steady-state phenomenon using an ensemble of sequential transient events: A proof of concept on photocurrent of bacteriorhodopsin upon continuous photoexcitation. Journal of Applied Physics, 2014, 116, 144701.	1.1	0
34	Transient Infrared Absorption Spectra of Reaction Intermediates Detected with a Stepâ€scan Fourierâ€ŧransform Infrared Spectrometer. Journal of the Chinese Chemical Society, 2014, 61, 47-58.	0.8	24
35	Highly efficient orange and deep-red organic light emitting diodes with long operational lifetimes using carbazole–quinoline based bipolar host materials. Journal of Materials Chemistry C, 2014, 2, 6183-6191.	2.7	79
36	Solvent Isotope Effect on the Dark Adaptation of Bacteriorhodopsin in Purple Membrane: Viewpoints of Kinetics and Thermodynamics. Journal of Physical Chemistry B, 2014, 118, 2662-2669.	1.2	5

LI-KANG CHU

#	Article	IF	CITATIONS
37	Photochemistry of a Dual-Bacteriorhodopsin System in <i>Haloarcula marismortui</i> : HmbRI and HmbRII. Journal of Physical Chemistry B, 2014, 118, 7290-7301.	1.2	8
38	Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: A case of bacteriorhodopsin. Bioelectrochemistry, 2014, 99, 1-7.	2.4	5
39	Effects of Surfactants on the Purple Membrane and Bacteriorhodopsin: Solubilization or Aggregation?. Journal of Physical Chemistry B, 2013, 117, 6241-6249.	1.2	16
40	Study of the reactive excited-state dynamics of delipidated bacteriorhodopsin upon surfactant treatments. Chemical Physics Letters, 2012, 539-540, 151-156.	1.2	6
41	On the Mechanism of the Plasmonic Field Enhancement of the Solar-to-Electric Energy Conversion by the Other Photosynthetic System in Nature (Bacteriorhodopsin): Kinetic and Spectroscopic Study. Journal of Physical Chemistry C, 2010, 114, 15358-15363.	1.5	17
42	Plasmonic Field Enhancement of the Bacteriorhodopsin Photocurrent during Its Proton Pump Photocycle. Journal of the American Chemical Society, 2010, 132, 7250-7251.	6.6	40
43	Bacteriorhodopsin-based photo-electrochemical cell. Biosensors and Bioelectronics, 2010, 26, 620-626.	5.3	58
44	Bacteriorhodopsin Oâ€ s tate Photocycle Kinetics: A Surfactant Study. Photochemistry and Photobiology, 2010, 86, 70-76.	1.3	8
45	Kinetics of the Mâ€Intermediate in the Photocycle of Bacteriorhodopsin upon Chemical Modification with Surfactants. Photochemistry and Photobiology, 2010, 86, 316-323.	1.3	10
46	Transient infrared spectra of CH3SOO and CH3SO observed with a step-scan Fourier-transform spectrometer. Journal of Chemical Physics, 2010, 133, 184303.	1.2	30
47	Infrared absorption of gaseous c-ClCOOH and t-ClCOOH recorded with a step-scan Fourier-transform spectrometer. Journal of Chemical Physics, 2009, 130, 174304.	1.2	7
48	The μ27, ν8, and ν11 bands of propynal, C2HCHO, in the 650cmâ^1 region. Journal of Molecular Spectroscop 2008, 252, 230-238.	у _{Ю.4}	11
49	Infrared absorption of C6H5SO2 detected with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2007, 126, 134311.	1.2	10
50	Infrared absorption of gaseous CICS detected with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2007, 126, 174310.	1.2	8
51	Infrared absorption of gaseous CH3OO detected with a step-scan Fourier-transform spectrometer. Journal of Chemical Physics, 2007, 127, 234318.	1.2	26
52	Infrared absorption of CH3SO2 detected with time-resolved Fourier-transform spectroscopy. Journal of Chemical Physics, 2006, 124, 244301.	1.2	27
53	Detection of CISO with time-resolved Fourier-transform infrared absorption spectroscopy. Journal of Chemical Physics, 2004, 120, 3179-3184.	1.2	21