Akihiro Yabuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5171664/publications.pdf Version: 2024-02-01

Δείμιρο Υλειιεί

#	Article	IF	CITATIONS
1	Simple synthesis of copper sulfide film using self-reducible copper formate-amine-sulfur complex paste at less than 200ÅŰC. Chemical Physics Letters, 2022, 793, 139460.	2.6	2
2	Self-reducible copper complex inks with two amines for copper conductive films via calcination below 100 ŰC. Chemical Physics Letters, 2021, 763, 138248.	2.6	6
3	Self-healing Corrosion Protective Coating Using Cellulose Nanofibers. Nippon Gomu Kyokaishi, 2021, 94, 66-71.	0.0	0
4	Effective release of corrosion inhibitor by cellulose nanofibers and zeolite particles in self-healing coatings for corrosion protection. Progress in Organic Coatings, 2021, 154, 106194.	3.9	10
5	Simple Formation of Cancer Drug-Containing Self-Assembled Hydrogels with Temperature and pH-Responsive Release. Langmuir, 2021, 37, 11269-11275.	3.5	7
6	Self-healing corrosion protective coatings in transportation industries. , 2020, , 99-133.		3
7	One-step direct fabrication of manganese oxide electrodes by low-temperature thermal decomposition of manganese formate-amine ink for supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114754.	3.5	2
8	Low-temperature synthesis of copper conductivity film from a copper formate amine complex with a low boiling point. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114743.	3.5	11
9	Stable shape for copper film using low-temperature thermal decomposition of copper microparticles for printable electronics. Chemical Physics Letters, 2020, 761, 138055.	2.6	7
10	Self-reducible copper complex inks with aminediol and OH-based solvent for the fabrication of a highly conductive copper film by calcination at low temperature under an air atmosphere. New Journal of Chemistry, 2020, 44, 19880-19884.	2.8	2
11	Porous anodic oxide film with self-healing ability for corrosion protection of aluminum. Electrochimica Acta, 2019, 296, 662-668.	5.2	24
12	Mesh-like thin-film electrodes of manganese oxide with high specific capacitance synthesized via thermal decomposition of manganese formate-amine complexed ink. Materials Research Bulletin, 2019, 112, 346-353.	5.2	6
13	Recent Trends in Nanofiber-Based Anticorrosion Coatings. , 2019, , 905-936.		1
14	Recent Trends in Nanofiber-Based Anticorrosion Coatings. , 2018, , 1-32.		1
15	Self-healing polymer coating with the microfibers of superabsorbent polymers provides corrosion inhibition in carbon steel. Surface and Coatings Technology, 2018, 341, 71-77.	4.8	39
16	Controlling the length of short electrospun polymer nanofibers via the addition of micro-spherical silica particles. Journal of Materials Science, 2017, 52, 4016-4024.	3.7	5
17	Henna leaves extract as a corrosion inhibitor in acrylic resin coating. Progress in Organic Coatings, 2017, 105, 310-319.	3.9	49
18	Nickel film synthesized by the thermal decomposition of nickel-amine complexes. Thin Solid Films, 2017, 642, 169-173.	1.8	11

#	Article	IF	CITATIONS
19	Multi-plate, thin-film electrodes of manganese oxide synthesized via the thermal decomposition of a manganese-amine complex for use as electrochemical supercapacitors. Electrochimica Acta, 2016, 222, 693-700.	5.2	8
20	Mapping the influence of electrospinning parameters on the morphology transition of short and continuous nanofibers. Fibers and Polymers, 2016, 17, 1238-1244.	2.1	5
21	pH-controlled self-healing polymer coatings with cellulose nanofibers providing an effective release of corrosion inhibitor. Corrosion Science, 2016, 103, 117-123.	6.6	93
22	Self-Healing Corrosion Protective Coatings. Journal of the Japan Society of Colour Material, 2016, 89, 17-21.	0.1	0
23	Self-Healing Coatings for Corrosion Inhibition of Metals. Modern Applied Science, 2015, 9, 214.	0.6	10
24	Short electrospun composite nanofibers: Effects of nanoparticle concentration and surface charge on fiber length. Current Applied Physics, 2014, 14, 761-767.	2.4	7
25	Transparent conductive coatings of hot-pressed ITO nanoparticles on a plastic substrate. Chemical Engineering Journal, 2014, 252, 275-280.	12.7	14
26	A simple one-step fabrication of short polymer nanofibers via electrospinning. Journal of Materials Science, 2014, 49, 3519-3528.	3.7	15
27	Self-healing polymer coatings with cellulose nanofibers served as pathways for the release of a corrosion inhibitor. Corrosion Science, 2014, 85, 141-146.	6.6	70
28	Synthesis of copper conductive film by low-temperature thermal decomposition of copper–aminediol complexes under an air atmosphere. Materials Chemistry and Physics, 2014, 148, 299-304.	4.0	58
29	Self-healing of Metal Surface by Coating. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2014, 65, 470-474.	0.2	1
30	One-step fabrication of short electrospun fibers using an electric spark. Journal of Materials Processing Technology, 2013, 213, 1894-1899.	6.3	24
31	Self-healing coatings using superabsorbent polymers for corrosion inhibition in carbon steel. Corrosion Science, 2012, 59, 258-262.	6.6	64
32	Electrically conductive copper film prepared at low temperature by thermal decomposition of copper amine complexes with various amines. Materials Research Bulletin, 2012, 47, 4107-4111.	5.2	73
33	Self-healing coatings of inorganic particles using a pH-sensitive organic agent. Corrosion Science, 2011, 53, 829-833.	6.6	44
34	Self-healing capability of porous polymer film with corrosion inhibitor inserted for corrosion protection. Corrosion Science, 2011, 53, 4118-4123.	6.6	38
35	Self-healing Corrosion Protective Coatings using Super Absorbent Polymer and Corrosion Inhibitor. Zairyo To Kankyo/ Corrosion Engineering, 2011, 60, 438-440.	0.2	0
36	Self-healing corrosion protective capability of polymer coatings for aluminum. Keikinzoku/Journal of Japan Institute of Light Metals, 2011, 61, 724-728.	0.4	2

#	Article	IF	CITATIONS
37	Oxidation behavior of copper nanoparticles at low temperature. Materials Research Bulletin, 2011, 46, 2323-2327.	5.2	91
38	Selfâ€healing properties of TiO ₂ particle–polymer composite coatings for protection of aluminum alloys against corrosion in seawater. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 907-912.	1.5	25
39	Particle-induced damage and subsequent healing of materials: Erosion, corrosion and self-healing coatings. Advanced Powder Technology, 2011, 22, 303-310.	4.1	15
40	Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes. Thin Solid Films, 2011, 519, 6530-6533.	1.8	78
41	Corrosion of Al-Zn Alloy Coating by Flame Splay Methods in Flowing Seawater near Freezing Point. Zairyo To Kankyo/ Corrosion Engineering, 2011, 60, 457-461.	0.2	0
42	Electrical conductivity of copper nanoparticle thin films annealed at low temperature. Thin Solid Films, 2010, 518, 7033-7037.	1.8	97
43	Barrier and selfâ€healing coating with fluoroâ€organic compound for zinc. Materials and Corrosion - Werkstoffe Und Korrosion, 2009, 60, 444-449.	1.5	20
44	Nearâ€wall hydrodynamic effects related to flowâ€induced localized corrosion. Materials and Corrosion - Werkstoffe Und Korrosion, 2009, 60, 501-506.	1.5	5
45	Importance of dispersibility of TiO2 in preparation of TiO2-dispersed microspheres by Shirasu porous glass (SPG) membrane emulsification. Advanced Powder Technology, 2009, 20, 361-365.	4.1	11
46	Anodic films formed on magnesium in organic, silicate-containing electrolytes. Corrosion Science, 2009, 51, 793-798.	6.6	45
47	Preparation of Nanocomposite Microspheres Containing High Concentration of TiO2 Nanoparticles via Bead Mill Dispersion in Organic Solvent. Chemistry Letters, 2009, 38, 448-449.	1.3	6
48	Damage of Materials by Fine Particles and Self-Healing Coatings. Journal of the Society of Powder Technology, Japan, 2009, 46, 261-268.	0.1	0
49	Breakaway properties of film formed on copper and copper alloys in erosion–corrosion by mass transfer equation. Materials and Corrosion - Werkstoffe Und Korrosion, 2008, 59, 25-31.	1.5	9
50	Multilayer film deposition of Ag and SiO2 nanoparticles using a spin coating process. Thin Solid Films, 2008, 516, 8721-8725.	1.8	21
51	High-concentration Transparent TiO2 Nanocomposite Films Prepared from TiO2 Nanoslurry Dispersed by Using Bead Mill. Polymer Journal, 2008, 40, 694-699.	2.7	7
52	Preparation of Transparent Nanocomposite Microspheres via Dispersion of High-Concentration TiO2 and BaTiO3 Nanoparticles in Acrylic Monomer. Journal of the Society of Powder Technology, Japan, 2008, 45, 23-29.	0.1	5
53	Heating Profile Effect on Morphology, Crystallinity, and Photoluminescent Properties of Y ₂ O ₃ :Eu ³⁺ Phosphor Nanofibers Prepared Using an Electrospinning Method. Japanese Journal of Applied Physics, 2007, 46, 6705.	1.5	15
54	Critical Ion Concentration for Pitting and General Corrosion of Copper. Corrosion, 2007, 63, 249-257.	1.1	11

#	Article	IF	CITATIONS
55	Low-Temperature Crystallization of Barium Ferrite Nanoparticles by a Sodium Citrate-Aided Synthetic Process. Journal of Physical Chemistry C, 2007, 111, 10175-10180.	3.1	63
56	Control of Particle Morphology from Porous to Hollow by Spray-Drying with a Two-Fluid Nozzle and Template Materials. Kagaku Kogaku Ronbunshu, 2007, 33, 468-475.	0.3	3
57	Corrosion of an aluminum alloy chilled in flowing seawater and the effect of cathodic prevention. Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 340-344.	1.5	5
58	Barrier and selfâ€healing abilities of corrosion protective polymer coatings and metal powders for aluminum alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 497-501.	1.5	36
59	Optimum Condition of Phosphonic Acid Inhibitor Under A Flowing Solution. Zairyo To Kankyo/ Corrosion Engineering, 2005, 54, 74-78.	0.2	3
60	Is the Damage to Pure Copper Piping an Erosion-Corrosion in Nature?. Zairyo To Kankyo/ Corrosion Engineering, 2004, 53, 440-445.	0.2	2
61	A Method for Predicting Cavitation Erosion-Corrosion Damage in Simulated Seawater. Zairyo To Kankyo/ Corrosion Engineering, 2004, 53, 38-43.	0.2	1
62	Tribological behavior of aluminum alloys in a vibratory finishing process. Wear, 2003, 255, 1369-1379.	3.1	44
63	Mechanism of So-called Erosion-Corrosion and Flow Velocity Difference Corrosion of Pure Copper. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 155-159.	0.2	14
64	Corrosion of Pure Copper Caused by Vortex. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 160-165.	0.2	6
65	Corrosion of Low Alloyed Steel in Flowing Pure Water under High Temperature and High Pressure Conditions. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 53-57.	0.2	1
66	Effect of Ni and Be Content on the Flow-induced Localized Corrosion Behavior of Copper Alloys. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 539-544.	0.2	3
67	Copper Alloys Evaded by Marine Organisms. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 613-617.	0.2	1
68	Ditch Corrosion Generated in Flowing Boiler Feed Water. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 86-91.	0.2	0
69	Contact forces and mechanisms in a vibratory finisher. Wear, 2002, 252, 635-643.	3.1	77
70	ls Increasing the pH of AVT Boiler Water Useful in Preventing the Corrosion of Carbon Steel?. Zairyo To Kankyo/ Corrosion Engineering, 2001, 50, 386-389.	0.2	3
71	A Method for Predicting the Incubation Period of Cavitation Erosion. Zairyo To Kankyo/ Corrosion Engineering, 2000, 49, 483-488.	0.2	2
72	A Method for Predicting the Damage Rate of Cavitation Erosion in Actual Machines. Zairyo To Kankyo/ Corrosion Engineering, 2000, 49, 489-493.	0.2	1

#	Article	IF	CITATIONS
73	The anti-slurry erosion properties of polyethylene for sewerage pipe use. Wear, 2000, 240, 52-58.	3.1	17
74	Corrosion of Carbon Steel in Flowing Pure Water under High Temperature and High Pressure Conditions. Zairyo To Kankyo/ Corrosion Engineering, 2000, 49, 431-436.	0.2	3
75	Critical impact velocity in the solid particles impact erosion of metallic materials. Wear, 1999, 233-235, 468-475.	3.1	30
76	Theoretical equation of the critical impact velocity in solid particles impact erosion. Wear, 1999, 233-235, 476-483.	3.1	18
77	Slurry erosion properties of ceramic coatings. Wear, 1999, 233-235, 608-614.	3.1	16
78	Slurry Erosion Properties of Polyethylene. Zairyo To Kankyo/ Corrosion Engineering, 1999, 48, 508-513.	0.2	1
79	Critical Impact Velocity in the Solid Particles Impact Erosion of Metallic Materials. Zairyo To Kankyo/ Corrosion Engineering, 1998, 47, 540-547.	0.2	3
80	Theoretical Equation of the Critical Impact Velocity in Solid Particles Impact Erosion. Zairyo To Kankyo/ Corrosion Engineering, 1998, 47, 631-637.	0.2	0
81	The Determination of Solid Particles' Impact Conditions by Numerical Analysis in a Slurry Erosion Testing Apparatus. Zairyo To Kankyo/ Corrosion Engineering, 1997, 46, 293-298.	0.2	10
82	Cavitation Erosion Properties of Ceramics. Zairyo To Kankyo/ Corrosion Engineering, 1997, 46, 588-593.	0.2	0
83	Slurry Erosion Characteristics of Low Pressure Plasma Sprayed Ceramic Coatings. Zairyo To Kankyo/ Corrosion Engineering, 1997, 46, 299-304.	0.2	6
84	Improvement of Cavitation Erosion Resistance Properties of Ceramic Materials. Zairyo To Kankyo/ Corrosion Engineering, 1997, 46, 637-642.	0.2	1
85	Effects of Inhibitor on Cavitation Erosion of Commercially Pure Iron. Zairyo To Kankyo/ Corrosion Engineering, 1991, 40, 814-820.	0.2	2
86	Cavitation Erosion-retarding Effect of Tensile Stress. Zairyo To Kankyo/ Corrosion Engineering, 1991, 40, 821-826.	0.2	2
87	Prediction of Service Life of Metallic Materials exposed to Cavitation Attack. Corrosion Engineering, 1990, 39, 550-555.	0.1	4
88	One-Step Fabrication of Short Nanofibers by Electrospinning: Effect of Needle Size on Nanofiber Length. Advanced Materials Research, 0, 896, 33-36.	0.3	3
89	Organic solvent-based thermo-electrochemical cells with an iron(<scp>ii</scp> / <scp>iii</scp>) triflate redox couple for use in harvesting low-grade waste heat at 100–200 °C. Sustainable Energy and Fuels, 0, , .	4.9	4