Akihiro Yabuki

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5171664/publications.pdf
Version: 2024-02-01

1 Electrical conductivity of copper nanoparticle thin films annealed at low temperature. Thin Solid Films, 2010, 518, 7033-7037.
pH-controlled self-healing polymer coatings with cellulose nanofibers providing an effective release of corrosion inhibitor. Corrosion Science, 2016, 103, 117-123.

Oxidation behavior of copper nanoparticles at low temperature. Materials Research Bulletin, 2011, 46, 2323-2327.

Low-temperature synthesis of copper conductive film by thermal decomposition of copperâ€"amine complexes. Thin Solid Films, 2011, 519, 6530-6533.

Contact forces and mechanisms in a vibratory finisher. Wear, 2002, 252, 635-643.
$3.1 \quad 77$

6 Electrically conductive copper film prepared at low temperature by thermal decomposition of copper amine complexes with various amines. Materials Research Bulletin, 2012, 47, 4107-4111.
5.2

Self-healing polymer coatings with cellulose nanofibers served as pathways for the release of a
$7 \quad \begin{aligned} & \text { Self-healing polymer coatings } \\ & \text { corrosion inhibitor. Corrosion Science, 2014, 85, 141-146. }\end{aligned}$
$6.6 \quad 70$

Self-healing coatings using superabsorbent polymers for corrosion inhibition in carbon steel.
Corrosion Science, 2012, 59, 258-262.

9 Low-Temperature Crystallization of Barium Ferrite Nanoparticles by a Sodium Citrate-Aided Synthetic
9 Process. Journal of Physical Chemistry C, 2007, 111, 10175-10180.

10 Synthesis of copper conductive film by low-temperature thermal decomposition of copperâ€"aminediol complexes under an air atmosphere. Materials Chemistry and Physics, 2014, 148, 299-304.
4.0

58

```
11 Henna leaves extract as a corrosion inhibitor in acrylic resin coating. Progress in Organic Coatings,
2017, 105, 310-319.
```

Anodic films formed on magnesium in organic, silicate-containing electrolytes. Corrosion Science,
12 2009,51, 793-798.
6.6

45

13 Tribological behavior of aluminum alloys in a vibratory finishing process. Wear, 2003, 255, 1369-1379.
3.1

44

14 Self-healing coatings of inorganic particles using a pH -sensitive organic agent. Corrosion Science, 2011, 53, 829-833.

Self-healing polymer coating with the microfibers of superabsorbent polymers provides corrosion inhibition in carbon steel. Surface and Coatings Technology, 2018, 341, 71-77.
4.8

Self-healing capability of porous polymer film with corrosion inhibitor inserted for corrosion protection. Corrosion Science, 2011, 53, 4118-4123.

19	Selfâ€healing properties of $\mathrm{TiO}<$ sub $>2</$ sub $>$ particleâ $€$ "polymer composite coatings for protection of aluminum alloys against corrosion in seawater. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 907-912.	1.5	25
20	One-step fabrication of short electrospun fibers using an electric spark. Journal of Materials Processing Technology, 2013, 213, 1894-1899.	6.3	24
21	Porous anodic oxide film with self-healing ability for corrosion protection of aluminum. Electrochimica Acta, 2019, 296, 662-668.	5.2	24
22	Multilayer film deposition of Ag and SiO 2 nanoparticles using a spin coating process. Thin Solid Films, 2008, 516, 8721-8725.	1.8	21
23	Barrier and selfâ€healing coating with fluoroâ€organic compound for zinc. Materials and Corrosion Werkstoffe Und Korrosion, 2009, 60, 444-449.	1.5	20
24	Theoretical equation of the critical impact velocity in solid particles impact erosion. Wear, 1999, 233-235, 476-483.	3.1	18
25	The anti-slurry erosion properties of polyethylene for sewerage pipe use. Wear, 2000, 240, 52-58.	3.1	17

26 Slurry erosion properties of ceramic coatings. Wear, 1999, 233-235, 608-614.
Heating Profile Effect on Morphology, Crystallinity, and Photoluminescent Properties of$27 \quad$ Y₂0₃:Eu³⁺ Phosphor Nanofibers Prepared Using an

Particle-induced damage and subsequent healing of materials: Erosion, corrosion and self-healing coatings. Advanced Powder Technology, 2011, 22, 303-310.

> A simple one-step fabrication of short polymer nanofibers via electrospinning. Journal of Materials
> Science, 2014, 49, 3519-3528.
$3.7 \quad 15$

Mechanism of So-called Erosion-Corrosion and Flow Velocity Difference Corrosion of Pure Copper.
30 Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 155-159.
0.2

14

Transparent conductive coatings of hot-pressed ITO nanoparticles on a plastic substrate. Chemical
$31 \quad$ Transparent conductive coatings of hot-press.
12.7

14

32 Critical Ion Concentration for Pitting and General Corrosion of Copper. Corrosion, 2007, 63, 249-257.
1.1

11

Importance of dispersibility of TiO 2 in preparation of TiO 2 -dispersed microspheres by Shirasu porous
4.1

11 glass (SPG) membrane emulsification. Advanced Powder Technology, 2009, 20, 361-365.

Nickel film synthesized by the thermal decomposition of nickel-amine complexes. Thin Solid Films, 2017,
1.8

11 642, 169-173.

```
    Low-temperature synthesis of copper conductivity film from a copper formate amine complex with a
35 low boiling point. Materials Science and Engineering B: Solid-State Materials for Advanced
Technology, 2020, 262, 114743.
```

3.5 11

The Determination of Solid Particles' Impact Conditions by Numerical Analysis in a Slurry Erosion
Testing Apparatus. Zairyo To Kankyo/ Corrosion Engineering, 1997, 46, 293-298.

38 Effective release of corrosion inhibitor by cellulose nanofibers and zeolite particles in self-healing

39	Breakaway properties of film formed on copper and copper alloys in erosionâ $\epsilon^{\prime \prime}$ corrosion by mass transfer equation. Materials and Corrosion - Werkstoffe Und Korrosion, 2008, 59, 25-31.	1.5	9
40	Multi-plate, thin-film electrodes of manganese oxide synthesized via the thermal decomposition of a manganese-amine complex for use as electrochemical supercapacitors. Electrochimica Acta, 2016, 222, 693-700.	5.2	8
41	High-concentration Transparent TiO2 Nanocomposite Films Prepared from TiO2 Nanoslurry Dispersed by Using Bead Mill. Polymer Journal, 2008, 40, 694-699.	2.7	7
42	Short electrospun composite nanofibers: Effects of nanoparticle concentration and surface charge on fiber length. Current Applied Physics, 2014, 14, 761-767.	2.4	7
43	Stable shape for copper film using low-temperature thermal decomposition of copper microparticles for printable electronics. Chemical Physics Letters, 2020, 761, 138055.	2.6	7
44	Simple Formation of Cancer Drug-Containing Self-Assembled Hydrogels with Temperature and pH-Responsive Release. Langmuir, 2021, 37, 11269-11275.	3.5	7
45	Slurry Erosion Characteristics of Low Pressure Plasma Sprayed Ceramic Coatings. Zairyo To Kankyo/ Corrosion Engineering, 1997, 46, 299-304.	0.2	6

46 Corrosion of Pure Copper Caused by Vortex. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52,
160-165.
$0.2 \quad 6$

47	Preparation of Nanocomposite Microspheres Containing High Concentration of TiO2 Nanoparticles via Bead Mill Dispersion in Organic Solvent. Chemistry Letters, 2009, 38, 448-449.	1.3	6
48	Mesh-like thin-film electrodes of manganese oxide with high specific capacitance synthesized via thermal decomposition of manganese formate-amine complexed ink. Materials Research Bulletin, 2019, 112, 346-353.	5.2	6
49	Self-reducible copper complex inks with two amines for copper conductive films via calcination below $100 \hat{A}^{\circ} \mathrm{C}$. Chemical Physics Letters, 2021, 763, 138248.	2.6	6

50 Corrosion of an aluminum alloy chilled in flowing seawater and the effect of cathodic prevention.
Materials and Corrosion - Werkstoffe Und Korrosion, 2007, 58, 340-344.
$1.5 \quad 5$

Preparation of Transparent Nanocomposite Microspheres via Dispersion of High-Concentration TiO2
51 and BaTiO3 Nanoparticles in Acrylic Monomer. Journal of the Society of Powder Technology, Japan,
$0.1 \quad 5$
2008, 45, 23-29.
Nearâ€wall hydrodynamic effects related to flowâ€induced localized corrosion. Materials and
1.5

5
Corrosion - Werkstoffe Und Korrosion, 2009, 60, 501-506.

Mapping the influence of electrospinning parameters on the morphology transition of short and
continuous nanofibers. Fibers and Polymers, 2016, 17, 1238-1244.

```
5 5 ~ P r e d i c t i o n ~ o f ~ S e r v i c e ~ L i f e ~ o f ~ M e t a l l i c ~ M a t e r i a l s ~ e x p o s e d ~ t o ~ C a v i t a t i o n ~ A t t a c k . ~ C o r r o s i o n ~ E n g i n e e r i n g , ~
1990, 39, 550-555.
```

Organic solvent-based thermo-electrochemical cells with an iron(<scp>ii</scp>|<scp>iii</scp>)
56 triflate redox couple for use in harvesting low-grade waste heat at 100 â $\epsilon^{\prime \prime} 200 \hat{A}^{\circ} \mathrm{C}$. Sustainable Energy and Fuels, 0, , .
57 Critical Impact Velocity in the Solid Particles Impact Erosion of Metallic Materials. Zairyo To Kankyo/
$59 \quad$ Is Increasing the pH of AVT Boiler Water Useful in Preventing the Corrosion of Carbon Steel?. Zairyo
To Kankyo/ Corrosion Engineering, 2001, 50, 386-389.
0.23

Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 539-544.

61 Optimum Condition of Phosphonic Acid Inhibitor Under A Flowing Solution. Zairyo To Kankyo/
Corrosion Engineering, 2005, 54, 74-78.
0.23

Control of Particle Morphology from Porous to Hollow by Spray-Drying with a Two-Fluid Nozzle and
Template Materials. Kagaku Kogaku Ronbunshu, 2007, 33, 468-475.
0.3

3
63 One-Step Fabrication of Short Nanofibers by Electrospinning: Effect of Needle Size on Nanofiber

Length. Advanced Materials Research, 0, 896, 33-36.
0.3

3

64 Self-healing corrosion protective coatings in transportation industries. , 2020, , 99-133.

Effects of Inhibitor on Cavitation Erosion of Commercially Pure Iron. Zairyo To Kankyo/ Corrosion
Engineering, 1991, 40, 814-820.
$0.2 \quad 2$

Cavitation Erosion-retarding Effect of Tensile Stress. Zairyo To Kankyo/ Corrosion Engineering, 1991,
$0.2 \quad 2$
40, 821-826.
$0.2 \quad 2$
Engineering, 2000, 49, 483-488.

Is the Damage to Pure Copper Piping an Erosion-Corrosion in Nature?. Zairyo To Kankyo/ Corrosion
0.2 Engineering, 2004, 53, 440-445.

2

Self-healing corrosion protective capability of polymer coatings for aluminum. Keikinzoku/Journal of
Japan Institute of Light Metals, $2011,61,724-728$.
$0.4 \quad 2$

One-step direct fabrication of manganese oxide electrodes by low-temperature thermal decomposition of manganese formate-amine ink for supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114754.

Self-reducible copper complex inks with aminediol and OH-based solvent for the fabrication of a
71 highly conductive copper film by calcination at low temperature under an air atmosphere. New

$$
\begin{aligned}
& 73 \text { Improvement of Cavitation Erosion Resistance Properties of Ceramic Materials. Zairyo To Kankyo/ } \\
& \text { Corrosion Engineering, 1997, 46, 637-642. }
\end{aligned}
$$

74 Slurry Erosion Properties of Polyethylene. Zairyo To Kankyo/ Corrosion Engineering, 1999, 48, 508-513.
0.2

A Method for Predicting the Damage Rate of Cavitation Erosion in Actual Machines. Zairyo To Kankyo/
Corrosion Engineering, 2000, 49, 489-493.

Corrosion of Low Alloyed Steel in Flowing Pure Water under High Temperature and High Pressure
Conditions. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 53-57.
0.2

76
$77 \quad$ Copper Alloys Evaded by Marine Organisms. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 613-617.
$0.2 \quad 1$

A Method for Predicting Cavitation Erosion-Corrosion Damage in Simulated Seawater. Zairyo To
Kankyo/ Corrosion Engineering, 2004, 53, 38-43.
0.21

Self-healing of Metal Surface by Coating. Hyomen Gijutsu/Journal of the Surface Finishing Society of
Japan, 2014, 65, 470-474.
0.2

1

80 Recent Trends in Nanofiber-Based Anticorrosion Coatings. , 2018, , 1-32.
1

81 Recent Trends in Nanofiber-Based Anticorrosion Coatings. , 2019, , 905-936. 1

82 Cavitation Erosion Properties of Ceramics. Zairyo To Kankyo/ Corrosion Engineering, 1997, 46, 588-593.
0.20
83 Theoretical Equation of the Critical Impact Velocity in Solid Particles Impact Erosion. Zairyo To
83 Kankyo/ Corrosion Engineering, 1998, 47, 631-637.

$$
0
$$

$$
0
$$

Self-healing Corrosion Protective Coatings using Super Absorbent Polymer and Corrosion Inhibitor.
85 Self-healing Corrosion Protective Coating Using Cellulose Nanofibers. Nippon Comu Kyokaishi, 2021, 94, 66-71.

