Conggang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5171135/publications.pdf

Version: 2024-02-01

112	5 150	101496	91828
	5,159 citations		g-index
papers	citations	h-index	g-index
118	118	118	5393
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Molecular Insight into the Extracellular Chaperone Serum Albumin in Modifying the Folding Free Energy Landscape of Client Proteins. Journal of Physical Chemistry Letters, 2022, 13, 2711-2717.	2.1	2
2	Structural Insights into the Mechanism of High-Affinity Binding of Ochratoxin A by a DNA Aptamer. Journal of the American Chemical Society, 2022, 144, 7731-7740.	6.6	36
3	Lanmodulin remains unfolded and fails to interact with lanthanide ions in <i>Escherichia coli</i> cells. Chemical Communications, 2022, 58, 8230-8233.	2.2	2
4	Self-Assembled Oligopeptide (FK) ₄ as a Chiral Alignment Medium for the Anisotropic NMR Analysis of Organic Compounds. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29223-29229.	4.0	3
5	Simultaneous detection of small molecule thiols with a simple ¹⁹ F NMR platform. Chemical Science, 2021, 12, 1095-1100.	3.7	16
6	NMR-Based Methods for Protein Analysis. Analytical Chemistry, 2021, 93, 1866-1879.	3.2	43
7	The intracellular environment affects protein $\hat{a} \in \hat{b}$ protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
8	Backbone resonance assignment of PDI b'xa' domain construct. Biomolecular NMR Assignments, 2021, 15, 409-413.	0.4	0
9	NMR backbone resonance assignment of Japanese encephalitis virus capsid protein. Biomolecular NMR Assignments, 2021, 15, 403-407.	0.4	1
10	NMR for Mixture Analysis: Concentration-Ordered Spectroscopy. Analytical Chemistry, 2021, 93, 9697-9703.	3.2	5
11	CSI-LSTM: a web server to predict protein secondary structure using bidirectional long short term memory and NMR chemical shifts. Journal of Biomolecular NMR, 2021, 75, 393-400.	1.6	2
12	REALâ€ <i>t</i> ₁ , an Effective Approach for <i>t</i> ₁ â€Noise Suppression in NMR Spectroscopy Based on Resampling Algorithm. Chinese Journal of Chemistry, 2020, 38, 77-81.	2.6	6
13	05SAR-PAGE: Separation of protein dimerization and modification using a gel with 0.05% sarkosyl. Analytica Chimica Acta, 2020, 1101, 193-198.	2.6	3
14	CRISPR-Cas12a <i>trans</i> -cleaves DNA G-quadruplexes. Chemical Communications, 2020, 56, 12526-12529.	2.2	40
15	Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12, 717-724.	6.6	485
16	A novel potent metal-binding NDM-1 inhibitor was identified by fragment virtual, SPR and NMR screening. Bioorganic and Medicinal Chemistry, 2020, 28, 115437.	1.4	14
17	Mechanisms of Chaperones as Active Assistant/Protector for Proteins: Insights from NMR Studies. Chinese Journal of Chemistry, 2020, 38, 406-413.	2.6	0
18	Rational modulation of the enzymatic intermediates for tuning the phosphatase activity of histidine kinase HK853. Biochemical and Biophysical Research Communications, 2020, 523, 733-738.	1.0	3

#	Article	IF	CITATIONS
19	A New Strategy to Reduce Toxicity of Ethidium Bromide by Alternating Anions: New Derivatives with Excellent Optical Performances, Convenient Synthesis, and Low Toxicity. Small Methods, 2020, 4, 1900779.	4.6	7
20	Mechanoluminescence or Roomâ€Temperature Phosphorescence: Molecular Packingâ€Dependent Emission Response. Angewandte Chemie - International Edition, 2019, 58, 17297-17302.	7.2	116
21	Mechanoluminescence or Roomâ€Temperature Phosphorescence: Molecular Packingâ€Dependent Emission Response. Angewandte Chemie, 2019, 131, 17457-17462.	1.6	26
22	Phosphorylation dependent $\hat{l}\pm$ -synuclein degradation monitored by in-cell NMR. Chemical Communications, 2019, 55, 11215-11218.	2.2	13
23	Chemical shift assignments of the catalytic and ATP-binding domain of HK853 from Thermotoga maritime. Biomolecular NMR Assignments, 2019, 13, 173-176.	0.4	2
24	Structure-guided post-SELEX optimization of an ochratoxin A aptamer. Nucleic Acids Research, 2019, 47, 5963-5972.	6.5	51
25	Positively Charged Tags Impede Protein Mobility in Cells as Quantified by ¹⁹ F NMR. Journal of Physical Chemistry B, 2019, 123, 4527-4533.	1.2	28
26	Protein stability analysis in ionic liquids by 19F NMR. Analytical and Bioanalytical Chemistry, 2019, 411, 4929-4935.	1.9	12
27	Membraneâ€mediated disorderâ€toâ€order transition of SNAP25 flexible linker facilitates its interaction with syntaxinâ€1 and SNAREâ€complex assembly. FASEB Journal, 2019, 33, 7985-7994.	0.2	8
28	Structural Basis for the Inhibition of the Autophosphorylation Activity of HK853 by Luteolin. Molecules, 2019, 24, 933.	1.7	11
29	Effect of Substituent Size and Isomerization on the Polymorphism of 2-(Naphthalenylamino)-benzoic Acids. Crystal Growth and Design, 2019, 19, 3694-3703.	1.4	6
30	Calcium accelerates SNARE-mediated lipid mixing through modulating $\hat{l}\pm$ -synuclein membrane interaction. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1848-1853.	1.4	9
31	Backbone resonance assignment of the response regulator protein PhoBNF20D from Escherichia coli. Biomolecular NMR Assignments, 2018, 12, 133-137.	0.4	2
32	DNA quadruplexes as molecular scaffolds for controlled assembly of fluorogens with aggregation-induced emission. Chemical Science, 2018, 9, 2559-2566.	3.7	38
33	Dimerization and Conformational Exchanges of the Receiver Domain of Response Regulator PhoB from <i>Escherichia coli</i> Journal of Physical Chemistry B, 2018, 122, 5749-5757.	1.2	3
34	A dual fluorogenic and ¹⁹ F NMR probe for the detection of esterase activity. Materials Chemistry Frontiers, 2018, 2, 1201-1206.	3.2	24
35	Quantification of size effect on protein rotational mobility in cells by 19F NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2018, 410, 869-874.	1.9	21
36	Monitoring alkaline transitions of yeast iso-1 cytochrome c at natural isotopic abundance using trimethyllysine as a native NMR probe. Chemical Communications, 2018, 54, 12630-12633.	2.2	2

#	Article	IF	Citations
37	Zwitterion formation and subsequent carboxylate–pyridinium NH synthon generation through isomerization of 2-anilinonicotinic acid. CrystEngComm, 2018, 20, 6126-6132.	1.3	1
38	Crowding and Confinement Can Oppositely Affect Protein Stability. ChemPhysChem, 2018, 19, 3350-3355.	1.0	19
39	Potential detection of cancer with fluorinated silicon nanoparticles in ¹⁹ F MR and fluorescence imaging. Journal of Materials Chemistry B, 2018, 6, 4293-4300.	2.9	12
40	The Cucurbit[7]Urilâ€Based Supramolecular Chemistry for Reversible B/Zâ€DNA Transition. Advanced Science, 2018, 5, 1800231.	5.6	26
41	Polymorphic Smooth Interfaces Formation Based on the Biphasic BaTeMo2O9 Using Top Multi-Seeded Growth. Crystal Growth and Design, 2018, 18, 5054-5062.	1.4	9
42	Structural Isomerization of 2-Anilinonicotinic Acid Leads to a New Synthon in 6-Anilinonicotinic Acids. Crystal Growth and Design, 2018, 18, 4849-4859.	1.4	3
43	How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations. Advanced Materials, 2017, 29, 1606829.	11.1	351
44	Magnetic Resonance Spectroscopy as a Tool for Assessing Macromolecular Structure and Function in Living Cells. Annual Review of Analytical Chemistry, 2017, 10, 157-182.	2.8	35
45	A 19F NMR probe for the detection of β-galactosidase: simple structure with low molecular weight of 274.2, "turn-on―signal without the background, and good performance applicable in cancer cell line. Journal of Materials Chemistry B, 2017, 5, 4673-4678.	2.9	7
46	The Effects of Macromolecular Crowding on Calmodulin Structure and Function. Chemistry - A European Journal, 2017, 23, 6736-6740.	1.7	5
47	Confinement Alters the Structure and Function of Calmodulin. Angewandte Chemie - International Edition, 2017, 56, 530-534.	7.2	10
48	Confinement Alters the Structure and Function of Calmodulin. Angewandte Chemie, 2017, 129, 545-549.	1.6	5
49	Fluorine Pseudocontact Shifts Used for Characterizing the Protein–Ligand Interaction Mode in the Limit of NMR Intermediate Exchange. Angewandte Chemie, 2017, 129, 13162-13166.	1.6	0
50	Fluorine Pseudocontact Shifts Used for Characterizing the Protein–Ligand Interaction Mode in the Limit of NMR Intermediate Exchange. Angewandte Chemie - International Edition, 2017, 56, 12982-12986.	7.2	23
51	NMR backbone resonance assignment of New Delhi metallo-beta-lactamase. Biomolecular NMR Assignments, 2017, 11, 239-242.	0.4	7
52	Measurement of amide proton chemical shift anisotropy in perdeuterated proteins using CSA amplification. Journal of Magnetic Resonance, 2017, 284, 33-38.	1.2	9
53	A pH-gated conformational switch regulates the phosphatase activity of bifunctional HisKA-family histidine kinases. Nature Communications, 2017, 8, 2104.	5.8	37
54	Solution structure and interaction with copper in vitro and in living cells of the first BIR domain of XIAP. Scientific Reports, 2017, 7, 16630.	1.6	13

#	Article	IF	CITATIONS
55	Macromolecular and Small Molecular Crowding Have Similar Effects on αâ€Synuclein Structure. ChemPhysChem, 2017, 18, 55-58.	1.0	41
56	Reversible manipulation of the G-quadruplex structures and enzymatic reactions through supramolecular host–guest interactions. Nucleic Acids Research, 2017, 45, gkx025.	6.5	32
57	Preferred formation of the carboxylic acid–pyridine heterosynthon in 2-anilinonicotinic acids. RSC Advances, 2016, 6, 81101-81109.	1.7	11
58	3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy. Chemical Communications, 2016, 52, 10237-10240.	2.2	90
59	Impact of the \hat{l}_{\pm} -Synuclein Initial Ensemble Structure on Fibrillation Pathways and Kinetics. Journal of Physical Chemistry B, 2016, 120, 3140-3147.	1.2	14
60	Roles of structural plasticity in chaperone HdeA activity are revealed by 19F NMR. Chemical Science, 2016, 7, 2222-2228.	3.7	14
61	A relay strategy for the mercury (II) chemodosimeter with ultra-sensitivity as test strips. Scientific Reports, 2015, 5, 15987.	1.6	42
62	Labeling Strategy and Signal Broadening Mechanism of Protein NMR Spectroscopy in <i>Xenopus laevis</i> Oocytes. Chemistry - A European Journal, 2015, 21, 8686-8690.	1.7	23
63	Frontispiece: Labeling Strategy and Signal Broadening Mechanism of Protein NMR Spectroscopy inXenopus laevisOocytes. Chemistry - A European Journal, 2015, 21, n/a-n/a.	1.7	0
64	\hat{l}_{\pm} -synuclein-lanthanide metal ions interaction: binding sites, conformation and fibrillation. BMC Biophysics, 2015, 9, 1.	4.4	18
65	Measuring 13C/15N chemical shift anisotropy in [13C,15N] uniformly enriched proteins using CSA amplification. Solid State Nuclear Magnetic Resonance, 2015, 72, 96-103.	1.5	10
66	Direct Observation of Ca ²⁺ â€Induced Calmodulin Conformational Transitions in Intact <i>Xenopus laevis</i> Oocytes by ¹⁹ Fâ€NMR Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 5328-5330.	7.2	38
67	Spherical Nanoparticle Supported Lipid Bilayers for the Structural Study of Membrane Geometry-Sensitive Molecules. Journal of the American Chemical Society, 2015, 137, 14031-14034.	6.6	17
68	NMR studies of protein folding and binding in cells and cell-like environments. Current Opinion in Structural Biology, 2015, 30, 7-16.	2.6	58
69	Membrane Protein Structural Validation by Oriented Sample Solid-State NMR: Diacylglycerol Kinase. Biophysical Journal, 2014, 106, 1559-1569.	0.2	22
70	Strategies for Protein NMR in <i>Escherichia coli</i> Biochemistry, 2014, 53, 1971-1981.	1.2	24
71	Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research. Analytical and Bioanalytical Chemistry, 2014, 406, 2279-2288.	1.9	17
72	Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs). Chemical Reviews, 2014, 114, 6661-6714.	23.0	391

#	Article	IF	CITATIONS
7 3	Ca2+ modulating α-synuclein membrane transient interactions revealed by solution NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 853-858.	1.4	21
74	Soft interactions and crowding. Biophysical Reviews, 2013, 5, 187-194.	1.5	205
7 5	Protein dynamics elucidated by NMR technique. Protein and Cell, 2013, 4, 726-730.	4.8	6
76	NASR: An Effective Approach for Simultaneous Noise and Artifact Suppression in NMR Spectroscopy. Analytical Chemistry, 2013, 85, 2523-2528.	3.2	15
77	From Nitro―to Sulfonylâ€Based Chromophores: Improvement of the Comprehensive Performance of Nonlinear Optical Dendrimers. Chemistry - A European Journal, 2013, 19, 6874-6888.	1.7	10
78	Protein dynamics in living cells studied by inâ€cell NMR spectroscopy. FEBS Letters, 2013, 587, 1008-1011.	1.3	39
79	NMR Spectroscopic Approach Reveals Metabolic Diversity of Human Blood Plasma Associated with Protein–Drug Interaction. Analytical Chemistry, 2013, 85, 8601-8608.	3.2	7
80	¹⁹ Fâ€NMR Spectroscopy as a Probe of Cytoplasmic Viscosity and Weak Protein Interactions in Living Cells. Chemistry - A European Journal, 2013, 19, 12705-12710.	1.7	83
81	Highâ€Ceneration Secondâ€Order Nonlinear Optical (NLO) Dendrimers that Contain Isolation Chromophores: Convenient Synthesis by Using Click Chemistry and their Increased NLO Effects. Chemistry - A European Journal, 2012, 18, 11019-11028.	1.7	55
82	A Reactionâ€Based Colorimetric Fluoride Probe: Rapid "Nakedâ€Eye―Detection and Large Absorption Shift. ChemPlusChem, 2012, 77, 908-913.	1.3	24
83	Dual-band selective double cross polarization for heteronuclear polarization transfer between dilute spins in solid-state MAS NMR. Journal of Magnetic Resonance, 2012, 217, 92-99.	1.2	9
84	In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State Magic-Angle-Spinning NMR. Journal of the American Chemical Society, 2011, 133, 12370-12373.	6.6	83
85	Drug sensitivity, drug-resistant mutations, and structures of three conductance domains of viral porins. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 538-546.	1.4	16
86	An upper limit for macromolecular crowding effects. BMC Biophysics, 2011, 4, 13.	4.4	29
87	Azobenzeneâ€Based Colorimetric Chemosensors for Rapid Nakedâ€Eye Detection of Mercury(II). Chemistry - A European Journal, 2011, 17, 7276-7281.	1.7	108
88	Probing the Micelleâ€Bound Aggregationâ€Prone State of αâ€5ynuclein with ¹⁹ F NMR Spectroscopy. ChemBioChem, 2010, 11, 1993-1996.	1.3	20
89	¹⁹ F NMR studies of αâ€synucleinâ€membrane interactions. Protein Science, 2010, 19, 1686-1691.	3.1	58
90	Protein Diffusion and Macromolecular Crowding. Biophysical Journal, 2010, 98, 4a.	0.2	0

#	Article	IF	CITATIONS
91	Effects of Proteins on Protein Diffusion. Journal of the American Chemical Society, 2010, 132, 9392-9397.	6.6	223
92	Volume Exclusion and Soft Interaction Effects on Protein Stability under Crowded Conditions. Biochemistry, 2010, 49, 6984-6991.	1.2	148
93	Protein ¹⁹ F NMR in <i>Escherichia coli</i> li>. Journal of the American Chemical Society, 2010, 132, 321-327.	6.6	196
94	Using NMR-Detected Backbone Amide 1H Exchange to Assess Macromolecular Crowding Effects on Globular-Protein Stability. Methods in Enzymology, 2009, 466, 1-18.	0.4	28
95	Protein Nuclear Magnetic Resonance under Physiological Conditions. Biochemistry, 2009, 48, 226-234.	1.2	75
96	Using NMR to Distinguish Viscosity Effects from Nonspecific Protein Binding under Crowded Conditions. Journal of the American Chemical Society, 2009, 131, 1368-1369.	6.6	61
97	Translational and Rotational Diffusion of a Small Globular Protein under Crowded Conditions. Journal of Physical Chemistry B, 2009, 113, 13390-13392.	1.2	82
98	19F NMR Studies of α-Synuclein Conformation and Fibrillation. Biochemistry, 2009, 48, 8578-8584.	1.2	76
99	Solid-State NMR and MD Simulations of the Antiviral Drug Amantadine Solubilized in DMPC Bilayers. Biophysical Journal, 2008, 94, 1295-1302.	0.2	45
100	Differential Dynamical Effects of Macromolecular Crowding on an Intrinsically Disordered Protein and a Globular Protein: Implications for In-Cell NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 6310-6311.	6.6	119
101	Residue-Level Interrogation of Macromolecular Crowding Effects on Protein Stability. Journal of the American Chemical Society, 2008, 130, 6826-6830.	6.6	88
102	Solid-state NMR characterization of conformational plasticity within the transmembrane domain of the influenza A M2 proton channel. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 3162-3170.	1.4	89
103	Uniformly Aligned Full-Length Membrane Proteins in Liquid Crystalline Bilayers for Structural Characterization. Journal of the American Chemical Society, 2007, 129, 5304-5305.	6.6	32
104	Backbone Structure of the Amantadine-Blocked Trans-Membrane Domain M2 Proton Channel from Influenza A Virus. Biophysical Journal, 2007, 92, 4335-4343.	0.2	175
105	Lipid bilayers: an essential environment for the understanding of membrane proteins. Magnetic Resonance in Chemistry, 2007, 45, S2-S11.	1.1	49
106	Structural biology of transmembrane domains: Efficient production and characterization of transmembrane peptides by NMR. Protein Science, 2007, 16, 2153-2165.	3.1	38
107	Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900MHz. Journal of Magnetic Resonance, 2007, 185, 77-93.	1.2	172
108	Analysis of RF heating and sample stability in aligned static solid-state NMR spectroscopy. Journal of Magnetic Resonance, 2006, 180, 51-57.	1.2	33

#	Article	IF	CITATION
109	Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34, 247-254.	1.4	19
110	NMR Study on the Low-Affinity Interaction of Human Serum Albumin with Diclofenac Sodium Chemical and Pharmaceutical Bulletin, 2002, 50, 1017-1021.	0.6	25
111	Determination of Molecular Self-Diffusion Coefficient Using Multiple Spin-Echo NMR Spectroscopy with Removal of Convection and Background Gradient Artifacts. Analytical Chemistry, 2001, 73, 3528-3534.	3.2	38
112	1H NMR study of low-affinity binding of ibuprofen to human serum albumin at different pH. Applied Magnetic Resonance, 2000, 19, 179-186.	0.6	6