
## Marianna Crispino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5170992/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Behavioral, Anti-Inflammatory, and Neuroprotective Effects of a Novel FPR2 Agonist in Two Mouse<br>Models of Autism. Pharmaceuticals, 2022, 15, 161.                                                                              | 1.7 | 8         |
| 2  | In Vitro and In Silico Analysis of the Residence Time of Serotonin 5-HT <sub>7</sub> Receptor Ligands<br>with Arylpiperazine Structure: A Structure–Kinetics Relationship Study. ACS Chemical Neuroscience,<br>2022, 13, 497-509. | 1.7 | 3         |
| 3  | Development and validation of an instrument to measure students' engagement and participation in science activities through factor analysis and Rasch analysis. International Journal of Science Education, 2022, 44, 18-47.      | 1.0 | 1         |
| 4  | Dietary Micronutrient Management to Treat Mitochondrial Dysfunction in Diet-Induced Obese Mice.<br>International Journal of Molecular Sciences, 2021, 22, 2862.                                                                   | 1.8 | 7         |
| 5  | Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients, 2021, 13, 1111.                                                               | 1.7 | 43        |
| 6  | Presynaptic protein synthesis and brain plasticity: From physiology to neuropathology. Progress in Neurobiology, 2021, 202, 102051.                                                                                               | 2.8 | 17        |
| 7  | Heart Mitochondrial Metabolic Flexibility and Redox Status Are Improved by Donkey and Human Milk<br>Intake. Antioxidants, 2021, 10, 1807.                                                                                         | 2.2 | 7         |
| 8  | Deregulated Local Protein Synthesis in the Brain Synaptosomes of a Mouse Model for Alzheimer's<br>Disease. Molecular Neurobiology, 2020, 57, 1529-1541.                                                                           | 1.9 | 25        |
| 9  | Cross Talk at the Cytoskeleton–Plasma Membrane Interface: Impact on Neuronal Morphology and<br>Functions. International Journal of Molecular Sciences, 2020, 21, 9133.                                                            | 1.8 | 10        |
| 10 | Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on<br>Synaptic Mitochondrial Functions. International Journal of Molecular Sciences, 2020, 21, 5964.                              | 1.8 | 42        |
| 11 | Neurodevelopmental Disorders: Effect of High-Fat Diet on Synaptic Plasticity and Mitochondrial<br>Functions. Brain Sciences, 2020, 10, 805.                                                                                       | 1.1 | 15        |
| 12 | Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease. International<br>Journal of Molecular Sciences, 2020, 21, 505.                                                                                 | 1.8 | 38        |
| 13 | Cystatin B is essential for proliferation and interneuron migration in individuals with <scp>EPM</scp> 1 epilepsy. EMBO Molecular Medicine, 2020, 12, e11419.                                                                     | 3.3 | 32        |
| 14 | Cystatin B Involvement in Synapse Physiology of Rodent Brains and Human Cerebral Organoids.<br>Frontiers in Molecular Neuroscience, 2019, 12, 195.                                                                                | 1.4 | 47        |
| 15 | High-Fat Diet Induces Neuroinflammation and Mitochondrial Impairment in Mice Cerebral Cortex and Synaptic Fraction. Frontiers in Cellular Neuroscience, 2019, 13, 509.                                                            | 1.8 | 87        |
| 16 | DNA in Squid Synaptosomes. Molecular Neurobiology, 2019, 56, 56-60.                                                                                                                                                               | 1.9 | 5         |
| 17 | Milk from cows fed a diet with a high forage:concentrate ratio improves inflammatory state, oxidative stress, and mitochondrial function in rats. Journal of Dairy Science, 2018, 101, 1843-1851.                                 | 1.4 | 23        |
| 18 | Squid Giant Axons Synthesize NF Proteins. Molecular Neurobiology, 2018, 55, 3079-3084.                                                                                                                                            | 1.9 | 4         |

MARIANNA CRISPINO

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Information content of dendritic spines after motor learning. Behavioural Brain Research, 2018, 336, 256-260.                                                                                                                                                | 1.2 | 11        |
| 20 | Human Milk and Donkey Milk, Compared to Cow Milk, Reduce Inflammatory Mediators and Modulate<br>Glucose and Lipid Metabolism, Acting on Mitochondrial Function and Oleylethanolamide Levels in Rat<br>Skeletal Muscle. Frontiers in Physiology, 2018, 9, 32. | 1.3 | 41        |
| 21 | Long Feeding High-Fat Diet Induces Hypothalamic Oxidative Stress and Inflammation, and Prolonged<br>Hypothalamic AMPK Activation in Rat Animal Model. Frontiers in Physiology, 2018, 9, 818.                                                                 | 1.3 | 70        |
| 22 | Milk From Cow Fed With High Forage/Concentrate Ratio Diet: Beneficial Effect on Rat Skeletal Muscle<br>Inflammatory State and Oxidative Stress Through Modulation of Mitochondrial Functions and AMPK<br>Activity. Frontiers in Physiology, 2018, 9, 1969.   | 1.3 | 17        |
| 23 | Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese<br>Mice. Diabetes, 2017, 66, 1405-1418.                                                                                                                 | 0.3 | 214       |
| 24 | Effects of an High-Fat Diet Enriched in Lard or in Fish Oil on the Hypothalamic Amp-Activated Protein<br>Kinase and Inflammatory Mediators. Frontiers in Cellular Neuroscience, 2016, 10, 150.                                                               | 1.8 | 40        |
| 25 | Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics. Frontiers in Behavioral Neuroscience, 2015, 9, 62.                                                                                              | 1.0 | 43        |
| 26 | High Fat Diet and Inflammation – Modulation of Haptoglobin Level in Rat Brain. Frontiers in Cellular<br>Neuroscience, 2015, 9, 479.                                                                                                                          | 1.8 | 35        |
| 27 | The serotonin receptor 7 and the structural plasticity of brain circuits. Frontiers in Behavioral Neuroscience, 2014, 8, 318.                                                                                                                                | 1.0 | 51        |
| 28 | Haptoglobin increases with age in rat hippocampus and modulates Apolipoprotein E mediated cholesterol trafficking in neuroblastoma cell lines. Frontiers in Cellular Neuroscience, 2014, 8, 212.                                                             | 1.8 | 23        |
| 29 | BAG3 mRNA is present in synaptosomal polysomes of rat brain. Cell Cycle, 2014, 13, 1357-1357.                                                                                                                                                                | 1.3 | 4         |
| 30 | Local gene expression in nerve endings. Developmental Neurobiology, 2014, 74, 279-291.                                                                                                                                                                       | 1.5 | 36        |
| 31 | Brain synaptosomes harbor more than one cytoplasmic system of protein synthesis. Journal of<br>Neuroscience Research, 2014, 92, 1573-1580.                                                                                                                   | 1.3 | 5         |
| 32 | Training old rats selectively modulates synaptosomal protein synthesis. Journal of Neuroscience<br>Research, 2013, 91, 20-29.                                                                                                                                | 1.3 | 20        |
| 33 | The serotonin receptor 7 promotes neurite outgrowth via ERK and Cdk5 signaling pathways.<br>Neuropharmacology, 2013, 67, 155-167.                                                                                                                            | 2.0 | 62        |
| 34 | Synaptosomal protein synthesis in P2 and Ficoll purified fractions. Journal of Neuroscience Methods, 2012, 203, 335-337.                                                                                                                                     | 1.3 | 5         |
| 35 | Synaptic mRNAs are modulated by learning. Journal of Neuroscience Research, 2009, 87, 1960-1968.                                                                                                                                                             | 1.3 | 12        |
| 36 | Protein Synthesis in Nerve Terminals and the Glia–Neuron Unit. Results and Problems in Cell<br>Differentiation, 2009, 48, 176-189.                                                                                                                           | 0.2 | 13        |

MARIANNA CRISPINO

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Myelinated axons contain βâ€actin mRNA and ZBPâ€1 in periaxoplasmic ribosomal plaques and depend on<br>cyclic AMP and Fâ€actin integrity for <i>inÂvitro</i> translation. Journal of Neurochemistry, 2008, 104,<br>545-557. | 2.1  | 49        |
| 38 | rTLE3, a Newly Identified Transducin-Like Enhancer of Split, Is Induced by Depolarization in Brain.<br>Journal of Neurochemistry, 2008, 74, 1838-1847.                                                                      | 2.1  | 10        |
| 39 | Ribosomal RNAs Synthesized by Isolated Squid Nerves and Ganglia Differ from Native Ribosomal RNAs.<br>Journal of Neurochemistry, 2008, 72, 910-918.                                                                         | 2.1  | 5         |
| 40 | Local Gene Expression in Axons and Nerve Endings: The Glia-Neuron Unit. Physiological Reviews, 2008, 88, 515-555.                                                                                                           | 13.1 | 75        |
| 41 | Local synthesis of axonal and presynaptic RNA in squid model systems. European Journal of<br>Neuroscience, 2007, 25, 341-350.                                                                                               | 1.2  | 53        |
| 42 | Synaptosomal protein synthesis is selectively modulated by learning. Brain Research, 2007, 1132, 148-157.                                                                                                                   | 1.1  | 23        |
| 43 | Axonal and presynaptic RNAs are locally transcribed in glial cells. Theoretical Biology Forum, 2007, 100, 203-19.                                                                                                           | 0.2  | 3         |
| 44 | The dual response of protein kinase Fyn to neural trauma: early induction in neurons and delayed induction in reactive astrocytes. Experimental Neurology, 2004, 185, 109-119.                                              | 2.0  | 28        |
| 45 | Squid photoreceptor terminals synthesize calexcitin, a learning related protein. Neuroscience Letters, 2003, 347, 21-24.                                                                                                    | 1.0  | 7         |
| 46 | The Salt-Inducible Kinase, SIK, Is Induced by Depolarization in Brain. Journal of Neurochemistry, 2002, 74, 2227-2238.                                                                                                      | 2.1  | 58        |
| 47 | Messenger RNAs in synaptosomal fractions from rat brain. Molecular Brain Research, 2001, 97, 171-176.                                                                                                                       | 2.5  | 12        |
| 48 | Protein synthesis in presynaptic endings from squid brain: Modulation by calcium ions. Journal of<br>Neuroscience Research, 1999, 55, 776-781.                                                                              | 1.3  | 15        |
| 49 | Changes in expression of neuronal and glial glutamate transporters in rat hippocampus following kainate-induced seizure activity. Molecular Brain Research, 1999, 65, 112-123.                                              | 2.5  | 90        |
| 50 | Variations of Synaptotagmin I, Synaptotagmin IV, and Synaptophysin mRNA Levels in Rat Hippocampus<br>during the Estrous Cycle. Experimental Neurology, 1999, 159, 574-583.                                                  | 2.0  | 30        |
| 51 | Dystrophin localization and gene expression in the developing nervous system of the chick. , 1998, 51, 109.                                                                                                                 |      | 2         |
| 52 | Seizure activity induces PIM-1 expression in brain. , 1998, 53, 502-509.                                                                                                                                                    |      | 24        |
| 53 | Nurr1 mRNA expression in neonatal and adult rat brain following kainic acid-induced seizure activity.<br>Molecular Brain Research, 1998, 59, 178-188.                                                                       | 2.5  | 47        |
| 54 | KID-1, a Protein Kinase Induced by Depolarization in Brain. Journal of Biological Chemistry, 1998, 273,<br>16535-16543.                                                                                                     | 1.6  | 86        |

MARIANNA CRISPINO

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Molecular cloning and characterization of a novel mRNA present in the squid giant axon. Journal of<br>Neuroscience Research, 1997, 49, 144-153.                     | 1.3 | 19        |
| 56 | Protein Synthesis in Brain Presynaptic Endings. , 1997, , 643-646.                                                                                                  |     | 0         |
| 57 | Gene Expression in Axons and Nerve Endings. , 1997, , 637-641.                                                                                                      |     | Ο         |
| 58 | Differential Compartmentalization of mRNAs in Squid Giant Axon. Journal of Neurochemistry, 1996, 67, 1806-1812.                                                     | 2.1 | 28        |
| 59 | Protein Synthesis in the Presynaptic Endings of the Squid Photoreceptor Neuron: In vitro and in viva<br>Modulation. Biological Bulletin, 1996, 191, 263-263.        | 0.7 | 6         |
| 60 | Characterization of squid enolase mRNA: Sequence analysis, tissue distribution, and axonal localization. Neurochemical Research, 1995, 20, 923-930.                 | 1.6 | 28        |
| 61 | Kinesin mRNA Is Present in the Squid Giant Axon. Journal of Neurochemistry, 1994, 63, 13-18.                                                                        | 2.1 | 46        |
| 62 | Protein Synthesis in Nerve Endings from Squid Brain: Modulation by Calcium Ions. Biological Bulletin, 1994, 187, 269-269.                                           | 0.7 | 6         |
| 63 | Neurofilament Proteins Are Synthesized in Nerve Endings from Squid Brain. Journal of Neurochemistry, 1993, 61, 1144-1146.                                           | 2.1 | 56        |
| 64 | Protein Synthesis in a Synaptosomal Fraction from Squid Brain. Molecular and Cellular<br>Neurosciences, 1993, 4, 366-374.                                           | 1.0 | 46        |
| 65 | β-Actin and β-Tubulin are components of a heterogeneous mRNA population present in the squid giant<br>axon. Molecular and Cellular Neurosciences, 1992, 3, 133-144. | 1.0 | 56        |